Deep Learning for Irregularly and Regularly Missing 3-D Data Reconstruction

深度学习 计算机科学 卷积神经网络 背景(考古学) 缺少数据 人工神经网络 一般化 人工智能 领域(数学) 均方误差 维数(图论) 钥匙(锁) 迭代重建 模式识别(心理学) 算法 机器学习 数学 统计 地质学 古生物学 数学分析 计算机安全 纯数学
作者
Xintao Chai,Genyang Tang,Shangxu Wang,Kai Lin,Ronghua Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6244-6265 被引量:65
标识
DOI:10.1109/tgrs.2020.3016343
摘要

Physical and/or economic constraints cause acquired seismic data to be incomplete; however, complete data are required for many subsequent seismic processing procedures. Data reconstruction is a crucial and long-standing topic in the exploration seismology field. We extended our previous works on deep learning (DL)-based irregularly and regularly missing 2-D data reconstruction to 3-D data. A key motivation is that the 3-D convolutional neural network (CNN) can take full advantage of the 3-D nature of the data, and the additional dimension allows more information to contribute to the data reconstruction. DL also avoids many assumptions (e.g., linearity, sparsity, and low-rank) limiting conventional nonintelligent reconstruction methods. We built an artificial neural network (ANN) based on an end-to-end U-Net encoder-decoder-style 3-D CNN. The ANN was trained on large quantities of various synthetic and field 3-D seismic data using a mean-squared-error (MSE) loss function and an Adam optimizer. We demonstrated that the developed 3-D CNN reconstruction method appears to outperform the 2-D CNN for 3-D restoration. We benchmarked the ANN's generalization capacity for recovery of irregularly and regularly sampled 3-D data on several typical seismic data sets, particularly those with high missing percentages or large gaps. An ANN trained with irregularly sampled data can be partly applied to regularly sampled cases. We investigated how a key parameter, i.e., the learning rate, can be experimentally determined. In the context of the presented examples, our methodology provided a substantial improvement over an open-source state-of-the-art rank-reduction-based approach in terms of data fidelity and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Usin完成签到,获得积分10
刚刚
搞怪慕晴完成签到,获得积分20
刚刚
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
双迩完成签到,获得积分10
2秒前
zhang发布了新的文献求助10
3秒前
3秒前
tyZhang完成签到,获得积分10
3秒前
Phoebe完成签到,获得积分10
4秒前
义气的惜霜完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
6秒前
6秒前
wangfang0228完成签到 ,获得积分10
6秒前
min发布了新的文献求助10
7秒前
Hello应助nick采纳,获得10
7秒前
lingyao完成签到 ,获得积分10
7秒前
852应助DATOU采纳,获得10
8秒前
smottom完成签到,获得积分0
8秒前
快哉快哉完成签到,获得积分10
8秒前
小胡关注了科研通微信公众号
8秒前
hh完成签到,获得积分10
9秒前
111完成签到,获得积分20
9秒前
9秒前
Seven完成签到 ,获得积分10
9秒前
王1发布了新的文献求助10
9秒前
ref:rain完成签到,获得积分10
10秒前
雨花花发布了新的文献求助10
10秒前
dududu发布了新的文献求助10
10秒前
11秒前
FashionBoy应助搞怪的访曼采纳,获得10
12秒前
太阳完成签到,获得积分10
13秒前
yy完成签到,获得积分10
13秒前
Any发布了新的文献求助10
13秒前
ref:rain发布了新的文献求助10
13秒前
哟梦完成签到,获得积分10
13秒前
h41692011完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035055
求助须知:如何正确求助?哪些是违规求助? 4268333
关于积分的说明 13306438
捐赠科研通 4078917
什么是DOI,文献DOI怎么找? 2230995
邀请新用户注册赠送积分活动 1239352
关于科研通互助平台的介绍 1165141