中子
硅
放射化学
抗辐射性
辐射损伤
半导体
同位素
核物理学
辐射
材料科学
物理
化学
光电子学
作者
Ying Bai,Zenghua Cai,Yu‐Ning Wu,Shiyou Chen
标识
DOI:10.1080/10420150.2020.1855178
摘要
Different isotopes may exhibit different resistance against the displacement damage induced by neutron radiations. To examine the difference in silicon isotopes, we calculate the damage functions of 28Si, 29Si, 30Si and the natural silicon under intermediate neutron (10−6–0.1 MeV) and fast neutron (>0.1 MeV) radiations based on radiation damage theory and the Neutron Nuclear Reaction Evaluation Database (ENDF/B-VIII.0). Their accumulative displacement per atom (DPA) values under the neutron radiation of nuclear accident emergency response or cosmic space are also investigated. The calculated radiation damage functions and DPAs indicate that 30Si endures at least 10–15% less displacement damage compared with 28Si, 29Si and the natural silicon under intermediate and fast neutron radiations. Therefore, we propose to use 30Si-enriched silicon in semiconductor devices to enhance the neutron radiation resistance and extend the service life in radiative circumstances.
科研通智能强力驱动
Strongly Powered by AbleSci AI