次氯酸
氯
化学
溴化物
无机化学
碳酸盐
催化作用
有机化学
作者
Samuel H. Brodfuehrer,David G. Wahman,Abdalrahman Alsulaili,Gerald E. Speitel,Lynn E. Katz
标识
DOI:10.1021/acs.est.0c04563
摘要
Kinetic models for disinfectant decay and disinfection byproduct (DBP) formation are necessary for predicting water quality from the treatment plant to the tap. A kinetic model for conditions relevant to chloramine disinfection of drinking water (pH 6–9 and carbonate-buffered) was developed to simulate incomplete bromide (Br–) oxidation during short prechlorination periods because it is the first step in a complex system of reactions that leads to disinfectant loss and DBP formation. Hypochlorous acid (HOCl+Br−→kHOClHOBr+Cl−) and molecular chlorine (Cl2+Br−+H2O→kCl2HOBr+2Cl−+H+) were the free chlorine species relevant to Br– oxidation, and Cl2 hydrolysis and formation reactions (Cl2+H2O+A−⇌k−4k4HOCl+HA+Cl−) were necessary to accurately simulate Cl2 concentrations instead of assuming equilibrium. Previous work has shown that Br– oxidation by HOCl and Cl2 formation are acid-catalyzed and Cl2 hydrolysis is base-catalyzed, but the impact of carbonate species had not been studied. This work showed that the carbonate species have an enhanced catalytic impact with rate constants up to 1000 times larger than would be estimated by the Brønsted relationship for similar acids, which causes the oxidation by HOCl rate constant (kHOCl) to nearly double and oxidation by Cl2 to occur above pH 7 in high-alkalinity waters.
科研通智能强力驱动
Strongly Powered by AbleSci AI