Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images

人工智能 计算机视觉
作者
Wissam Kaddah,Marwa Elbouz,Yousri Ouerhani,Ayman Alfalou,Marc Desthieux
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:36 (7): 1369-1384
标识
DOI:10.1007/s00371-019-01742-2
摘要

Pavement condition information is a significant component in pavement management systems. Precise extraction of road degradations particularly cracks is a critical task for surface safety. Manual surveys, which are labor intensive and costly, have induced several researchers to investigate the use of image processing to achieve automated pavement distress ratings. In the context of fine structures extraction, we present in this paper a novel approach for road crack detection under real conditions using several systems installed differently on a vehicle. It is such an automatic and effective approach that relies on both photometric and geometric characteristics of cracks. Based on an edge detection technique to avoid the bad conditions of image acquisition and an examination algorithm to verify the presence of high concentration of cracking pixels, this approach allows in a first step to select pixels that have great probability of belonging to a crack. Indeed, the originality of this approach stems from the proposed way to compute a set of thin filaments connecting the pixels selected at the first step between them. Finally, a post-processing step is applied to refine the obtained result and confirm either the presence or the absence of cracks in the image. Our proposed approach provides very robust and precise results on 2D pavement images in a wide range of situations and in a fully unsupervised manner. Furthermore, its innovative aspect is reflected in its ability to analyze easily both 2D and 3D pavement images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
daqing完成签到,获得积分20
2秒前
浅忆完成签到 ,获得积分10
2秒前
lhjct0313发布了新的文献求助30
3秒前
3秒前
5秒前
APS发布了新的文献求助10
6秒前
So完成签到 ,获得积分10
6秒前
斯文败类应助洁净笑白采纳,获得10
6秒前
7秒前
所所应助tan_sg采纳,获得10
7秒前
体贴怜翠完成签到,获得积分10
7秒前
果粒橙应助怎么睡不醒采纳,获得10
8秒前
科研通AI5应助YY本Y采纳,获得10
8秒前
8秒前
8秒前
8秒前
剪刀手完成签到 ,获得积分10
8秒前
上官若男应助被淹死的鱼采纳,获得30
8秒前
尼萌尼萌完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
万能图书馆应助正直凌文采纳,获得10
10秒前
11秒前
大辉发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
dou发布了新的文献求助10
14秒前
CXWANG完成签到,获得积分10
15秒前
15秒前
小花完成签到 ,获得积分10
15秒前
云辞忧完成签到,获得积分10
16秒前
喵喵666完成签到,获得积分10
17秒前
17秒前
17秒前
1111应助Rain采纳,获得10
18秒前
hsbuuwqbdubeq发布了新的文献求助10
18秒前
道元完成签到,获得积分10
18秒前
Ava应助felix采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575