Magnetic mineral diagenesis

成岩作用 自生的 地质学 沉积岩 磁铁矿 地球化学 矿物 矿物学 化学 古生物学 有机化学
作者
Andrew P. Roberts
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:151: 1-47 被引量:361
标识
DOI:10.1016/j.earscirev.2015.09.010
摘要

Reduction–oxidation (redox) reactions occur during burial because sediments contain reactive mixtures of oxidised and reduced components. Diagenetic chemical reactions represent the approach of all sedimentary components toward equilibrium, and control the long-term stability of sedimentary iron-bearing minerals. Magnetic minerals are sensitive indicators of sedimentary redox conditions and of changes in these conditions through time, with diagenetic effects ranging from subtle to pervasive. Despite the importance of magnetic mineral diagenesis in paleomagnetism, rock magnetism, and environmental magnetism, and the usefulness of these subjects in the Earth and environmental sciences, there is no systematic single published treatment of magnetic mineral diagenesis. This paper is an attempt to provide such a treatment for the full range of diagenetic environments. Magnetic mineral diagenesis during early burial is driven largely by chemical changes associated with organic matter degradation in a succession of environments that range from oxic to nitrogenous to manganiferous to ferruginous to sulphidic to methanic, where the free energy yielded by different oxidants decreases progressively in each environment. In oxic environments, the most important diagenetic processes involve surface oxidation of detrital minerals, and precipitation of Fe3 +-bearing minerals from solution. In ferruginous environments, the most reactive detrital and authigenic iron oxides undergo dissolution, often mediated by dissimilatory iron-reducing bacteria, which releases Fe2 + that becomes available for other reactions. The Fe2 + in solution can diffuse upward where it is oxidised to form new authigenic iron (oxyhydr-)oxide minerals or it can become bioavailable to enable magnetotactic bacteria to biomineralise magnetite, generally at the base of the overlying nitrogenous zone. Alternatively, dissimilatory iron-reducing bacteria can produce extracellular magnetite within ferruginous environments. In sulphidic environments, iron-bearing detrital mineral assemblages undergo more radical alteration. Hydrogen sulphide, which is a byproduct of bacterial sulphate reduction or of anaerobic oxidation of methane, reacts with the Fe2 + released from iron mineral dissolution or directly with solid iron (oxyhydr-)oxide minerals to form iron sulphide minerals (mackinawite, greigite, and pyrite). Authigenic growth of ferrimagnetic greigite has important implications for paleomagnetic recording. Secondary iron sulphide formation can also occur as a result of anaerobic oxidation of methane. Methane migration through sediments in association with biogenic or thermogenic methane production or in association with gas hydrate dissociation can disrupt the diagenetic steady state and give rise to greigite and monoclinic pyrrhotite formation that remagnetises sediments. Most of the above-described diagenetic processes occur below 50 °C. With continuing burial above 50 °C, but at sub-metamorphic temperatures, magnetic minerals can undergo further thermally-induced chemical changes that give rise to a wide range of mineralogical transformations that affect the magnetic record of the host sediment. These changes include remagnetisations. Magnetic analysis can provide much valuable information concerning diagenesis in environmental processes. The range of processes discussed in this paper should assist researchers in analysing sediment magnetic properties for which the assessment of diagenetic effects has become a necessary component.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wahaha完成签到 ,获得积分20
2秒前
靖哥哥发布了新的文献求助10
2秒前
GH发布了新的文献求助10
3秒前
Hello应助prim采纳,获得10
3秒前
8秒前
9秒前
wowser发布了新的文献求助10
9秒前
我来也完成签到 ,获得积分10
12秒前
Akim应助hx0841采纳,获得10
12秒前
光亮的代萱完成签到,获得积分10
12秒前
junjun发布了新的文献求助10
13秒前
14秒前
Ironl发布了新的文献求助10
14秒前
科研通AI2S应助任我行采纳,获得10
14秒前
核桃应助任我行采纳,获得10
14秒前
15秒前
唯梦发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
ding应助GH采纳,获得10
20秒前
20秒前
超级白昼发布了新的文献求助10
22秒前
稀饭发布了新的文献求助10
23秒前
Melan发布了新的文献求助10
23秒前
白河给你帅你有理的求助进行了留言
23秒前
l127发布了新的文献求助10
24秒前
思源应助赵鑫雅采纳,获得10
25秒前
小白完成签到,获得积分10
26秒前
aktuell发布了新的文献求助20
26秒前
情怀应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得20
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921