聚类分析
杂乱
光谱聚类
计算机科学
缩放比例
模式识别(心理学)
比例(比率)
CURE数据聚类算法
相关聚类
单连锁聚类
人工智能
数据挖掘
算法
数学
物理
雷达
几何学
电信
量子力学
作者
Lihi Zelnik‐Manor,Pietro Perona
出处
期刊:Neural Information Processing Systems
日期:2004-12-01
卷期号:17: 1601-1608
被引量:1962
摘要
We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multi-scale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a 'local' scale should be used to compute the affinity between each pair of points. This local scaling leads to better clustering especially when the data includes multiple scales and when the clusters are placed within a cluttered background. We further suggest exploiting the structure of the eigenvectors to infer automatically the number of groups. This leads to a new algorithm in which the final randomly initialized k-means stage is eliminated.
科研通智能强力驱动
Strongly Powered by AbleSci AI