Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products

成核 纳米晶 化学 胶体 堆积 金属 纳米技术 动能 化学物理 材料科学 物理化学 有机化学 物理 量子力学
作者
Younan Xia,Xiaohu Xia,Hsin‐Chieh Peng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:137 (25): 7947-7966 被引量:848
标识
DOI:10.1021/jacs.5b04641
摘要

This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuhong发布了新的文献求助10
1秒前
言辞完成签到,获得积分10
2秒前
拓跋箴完成签到,获得积分10
2秒前
桃花不用开了完成签到 ,获得积分10
2秒前
科研小刘完成签到,获得积分10
4秒前
别让我误会完成签到 ,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
可爱的函函应助几木采纳,获得10
7秒前
9秒前
xiaoyue发布了新的文献求助10
9秒前
10秒前
Dannnn发布了新的文献求助10
10秒前
wise111发布了新的文献求助10
11秒前
11秒前
吉康医学发布了新的文献求助10
16秒前
快去爬山完成签到 ,获得积分10
16秒前
tlh完成签到 ,获得积分10
16秒前
17秒前
半夏完成签到,获得积分10
19秒前
车访枫完成签到,获得积分10
20秒前
20秒前
科研通AI5应助wise111采纳,获得10
21秒前
22秒前
SYLH应助车访枫采纳,获得10
23秒前
23秒前
吉康医学完成签到,获得积分20
25秒前
26秒前
逍遥完成签到,获得积分10
26秒前
qiulong发布了新的文献求助10
27秒前
27秒前
钰钰完成签到 ,获得积分10
27秒前
Dark_Moon完成签到,获得积分10
29秒前
值班室禁止学习完成签到,获得积分10
30秒前
wanci应助爱听歌契采纳,获得10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451