Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:187: 106310-106310 被引量:55
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小桃子完成签到 ,获得积分10
刚刚
刻苦的宛白完成签到,获得积分10
刚刚
leo完成签到,获得积分10
1秒前
酷波er应助lucky采纳,获得10
2秒前
憨憨兔子完成签到,获得积分10
2秒前
苏杰完成签到,获得积分10
2秒前
zianlai完成签到,获得积分10
3秒前
赘婿应助穆亦擎采纳,获得10
3秒前
3秒前
Tom的梦想发布了新的文献求助10
3秒前
乔杰发布了新的文献求助10
3秒前
南栀完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
Ming完成签到,获得积分10
5秒前
6秒前
Derik发布了新的文献求助10
6秒前
笑点低的豪完成签到,获得积分10
6秒前
iNk应助尧南采纳,获得50
7秒前
舍予完成签到,获得积分10
7秒前
8秒前
8秒前
吴舟完成签到,获得积分10
8秒前
8秒前
JamesPei应助微笑牛马采纳,获得10
8秒前
紧张的LY发布了新的文献求助10
9秒前
高高的幻莲完成签到,获得积分10
9秒前
9秒前
科研通AI5应助小丸子采纳,获得10
9秒前
重要的尔安完成签到 ,获得积分20
9秒前
zojoy完成签到,获得积分10
10秒前
JYY完成签到 ,获得积分10
10秒前
cx完成签到,获得积分10
10秒前
10秒前
1459完成签到,获得积分10
10秒前
11秒前
沐金秋完成签到,获得积分10
11秒前
KY2022发布了新的文献求助10
11秒前
彭冬华发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Absent Here 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347186
求助须知:如何正确求助?哪些是违规求助? 3853421
关于积分的说明 12027755
捐赠科研通 3495042
什么是DOI,文献DOI怎么找? 1917664
邀请新用户注册赠送积分活动 960541
科研通“疑难数据库(出版商)”最低求助积分说明 860383