Ensemble Entropy Metric for Hyperspectral Anomaly Detection

异常检测 高光谱成像 像素 熵(时间箭头) 模式识别(心理学) 计算机科学 人工智能 假警报 聚类分析 恒虚警率 Kullback-Leibler散度 公制(单位) 数据挖掘 数学 物理 经济 量子力学 运营管理
作者
Bing Tu,Xianchang Yang,Xianfeng Ou,Guoyun Zhang,Jun Li,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:21
标识
DOI:10.1109/tgrs.2021.3116681
摘要

In hyperspectral anomaly detection, anomalies are rare targets that exhibit distinct spectral signatures from the background. Thus, anomalies are with low probabilities of occurrence in hyperspectral images. In this article, we develop a new technique for hyperspectral anomaly detection that adopts a new information theory perspective, to fully utilize the aforementioned concepts. Our goal is to transform system entropy into quantitative metrics of anomaly conspicuousness of pixels. To do so, two tasks are first completed: first, the construction of occurrence probability of pixels based on the density peak clustering algorithm, and second, the valid system definitions for pixels in specific anomaly detection problems with multiviews. Specifically, three types of systems are separately established by pixel pairs to conform to the definitions of three entropy definitions in information theory, i.e., Shannon entropy, joint entropy, and relative entropy. Then, three individual entropy-based metrics that assess the anomaly conspicuousness are defined. In addition, we design a standard deviation-based ensemble strategy for the integrated representation of the three individual metrics, which considers both logic "OR" and "AND" operations to simultaneously improve the detection rate and reduce the false alarm rate. Our experimental results obtained on two publicly available datasets with anomalies of different sizes and shapes demonstrate the superiority of our newly proposed anomaly detection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣鼠标完成签到 ,获得积分10
1秒前
93发布了新的文献求助10
2秒前
DE发布了新的文献求助10
2秒前
加菲丰丰应助朱彤彤采纳,获得10
3秒前
开开心心的开心完成签到,获得积分10
3秒前
泠199发布了新的文献求助10
3秒前
不想看文献完成签到,获得积分10
5秒前
SAODEN完成签到,获得积分10
8秒前
冰魂应助舒适路人采纳,获得10
9秒前
阿罗宁宁完成签到 ,获得积分10
9秒前
9秒前
Leon应助mujin采纳,获得10
10秒前
干净盼山完成签到,获得积分10
11秒前
11秒前
泠199完成签到,获得积分10
11秒前
11秒前
LArry完成签到,获得积分10
12秒前
12秒前
VitoLi发布了新的文献求助10
13秒前
汉堡包应助11采纳,获得10
14秒前
16秒前
木影忆发布了新的文献求助10
17秒前
17秒前
fffff发布了新的文献求助10
17秒前
随遇而安应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
智守奇安完成签到,获得积分10
21秒前
爆米花应助舒适路人采纳,获得10
21秒前
22秒前
22秒前
小海应助朱彤彤采纳,获得10
23秒前
深情安青应助啄春泥采纳,获得10
23秒前
Owen应助研友_ngX12Z采纳,获得10
24秒前
小远远发布了新的文献求助10
25秒前
wanidamm完成签到,获得积分10
27秒前
11发布了新的文献求助10
27秒前
3654289完成签到,获得积分10
29秒前
Dolbar关注了科研通微信公众号
31秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242254
捐赠科研通 3044938
什么是DOI,文献DOI怎么找? 1671417
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759342