反推
控制理论(社会学)
计算机科学
非线性系统
瞬态(计算机编程)
多智能体系统
规范(哲学)
人工神经网络
李雅普诺夫函数
有界函数
跟踪误差
指数稳定性
自适应控制
数学
Lyapunov稳定性
控制(管理)
控制器(灌溉)
人工智能
数学分析
农学
物理
量子力学
政治学
法学
生物
操作系统
作者
Meijian Tan,Zhi Liu,C. L. Philip Chen,Yun Zhang
标识
DOI:10.1016/j.ins.2021.10.053
摘要
Abstract This paper proposes an adaptive neural consensus tracking control approach for a class of leader-follower uncertain multiagent systems with sensor faults. Based on backstepping technique, a new direct adaptive neural control scheme is proposed to adaptively approximate the sensor faults. In order to improve the stability of the system and transient performance, a series of smooth functions are incorporated into control design and Lyapunov analysis. In addition, a class of reduced-order smooth functions is introduced to achieve a simpler virtual controller implementation. It is proved that the closed-loop signals are bounded and the synchronization errors can converge to a preset interval. Besides the asymptotic performance, a tunable L 2 -norm transient performance is achieved. Finally, numerical and physical example are presented to validate the effectiveness of the proposed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI