An automatic system for pest recognition and forecasting

计算机科学 人工智能 图像处理 样品(材料) 统计 有害生物分析 病虫害综合治理 农业工程 数学 图像(数学) 生态学 生物 工程类 化学 植物 色谱法
作者
Rujing Wang,Rui Li,Tianjiao Chen,Jie Zhang,Chengjun Xie,Kun Qiu,Peng Chen,Jianming Du,Hongbo Chen,FangRong Shao,Haiying Hu,Haiyun Liu
出处
期刊:Pest Management Science [Wiley]
卷期号:78 (2): 711-721 被引量:10
标识
DOI:10.1002/ps.6684
摘要

Pests cause significant damage to agricultural crops and reduce crop yields. Use of manual methods of pest forecasting for integrated pest management is labor-intensive and time-consuming. Here, we present an automatic system for monitoring pests in large fields, with the aim of replacing manual forecasting. The system comprises an automatic detection and counting system and a human-computer data statistical fitting system. Image data sets of the target pests from large fields are first input into the system. The number of pests in the image is then counted both manually and using the automatic system. Finally, a mapping relationship between counts obtained using the automated system and by agricultural experts is established using the statistical fitting system.Trends in the pest-count curves produced using the manual and automated counting methods were very similar. To sample the number of pests for manual statistics, plants were shaken to transfer the pests from the plant to a plate. Hence, pests hiding within plant crevices were also sampled and included in the count, whereas the automatic method counted only the pests visible in the images. Therefore, the computer index threshold was much lower than the manual index threshold. However, the proposed system correctly reflected trends in pest numbers obtained using computer vision.The experimental results demonstrate that our automatic pest-monitoring system can generate pest grades and can replace manual forecasting methods in large fields. © 2021 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助奶酪芝士采纳,获得10
3秒前
tracer完成签到,获得积分20
4秒前
CodeCraft应助Shad_owy采纳,获得10
5秒前
pluto应助火星上惜蕊采纳,获得10
5秒前
希望天下0贩的0应助Judy_Hui采纳,获得10
7秒前
斯文可仁完成签到,获得积分10
9秒前
思源应助HuaqingLiu采纳,获得10
12秒前
pluto应助wangyanling采纳,获得10
12秒前
12秒前
彭于晏应助Ryan采纳,获得10
13秒前
16秒前
Rye227应助俏皮诺言采纳,获得10
17秒前
99v587发布了新的文献求助10
18秒前
19秒前
英姑应助和谐冰菱采纳,获得10
20秒前
lyabigale完成签到 ,获得积分10
21秒前
光之霓裳完成签到 ,获得积分10
22秒前
27秒前
29秒前
奶酪芝士发布了新的文献求助10
31秒前
32秒前
在水一方应助99v587采纳,获得10
33秒前
酷波er应助greenandblue采纳,获得10
34秒前
34秒前
35秒前
茶茶发布了新的文献求助10
36秒前
上善若火完成签到 ,获得积分10
36秒前
简珹楚完成签到 ,获得积分10
38秒前
天天快乐应助茶茶采纳,获得10
41秒前
wcx发布了新的文献求助10
41秒前
chenshi0515完成签到 ,获得积分10
42秒前
乐乐应助XX采纳,获得10
43秒前
大闲鱼铭一完成签到 ,获得积分10
45秒前
YY完成签到 ,获得积分10
45秒前
小晃晃完成签到 ,获得积分10
49秒前
xia发布了新的文献求助10
49秒前
wcx完成签到,获得积分10
49秒前
Hoiden完成签到,获得积分10
50秒前
慕青应助郭小宝采纳,获得10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780078
求助须知:如何正确求助?哪些是违规求助? 3325423
关于积分的说明 10223034
捐赠科研通 3040585
什么是DOI,文献DOI怎么找? 1668935
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614