PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs

计算机科学 物理 应用数学 牙石(牙科) 数学物理 统计物理学 经典力学 理论物理学 数学 医学 牙科
作者
Pu Ren,Chengping Rao,Yang Liu,Jianxun Wang,Hao Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:389: 114399-114399 被引量:60
标识
DOI:10.1016/j.cma.2021.114399
摘要

Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to solve PDEs as a basis for data-driven modeling and inverse analysis. However, the majority of existing PINN methods, based on fully-connected NNs, pose intrinsic limitations to low-dimensional spatiotemporal parameterizations. Moreover, since the initial/boundary conditions (I/BCs) are softly imposed via penalty, the solution quality heavily relies on hyperparameter tuning. To this end, we propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhyCRNet-s) for solving PDEs without any labeled data. Specifically, an encoder-decoder convolutional long short-term memory network is proposed for low-dimensional spatial feature extraction and temporal evolution learning. The loss function is defined as the aggregated discretized PDE residuals, while the I/BCs are hard-encoded in the network to ensure forcible satisfaction (e.g., periodic boundary padding). The networks are further enhanced by autoregressive and residual connections that explicitly simulate time marching. The performance of our proposed methods has been assessed by solving three nonlinear PDEs (e.g., 2D Burgers' equations, the $\lambda$-$\omega$ and FitzHugh Nagumo reaction-diffusion equations), and compared against the start-of-the-art baseline algorithms. The numerical results demonstrate the superiority of our proposed methodology in the context of solution accuracy, extrapolability and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝天椒发布了新的文献求助10
2秒前
Ava应助孙季沅采纳,获得10
3秒前
7秒前
科研通AI5应助舒适路人采纳,获得30
7秒前
从容的巧曼完成签到 ,获得积分10
11秒前
wssamuel完成签到 ,获得积分10
12秒前
张慧杰完成签到,获得积分10
13秒前
大大小小发布了新的文献求助10
14秒前
丘比特应助Wang采纳,获得10
14秒前
开庆完成签到,获得积分10
14秒前
星点完成签到 ,获得积分10
15秒前
维恰完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
朝天椒完成签到,获得积分10
17秒前
17秒前
华仔应助生生不息采纳,获得10
19秒前
BulingQAQ完成签到,获得积分20
19秒前
SciGPT应助舒适路人采纳,获得10
20秒前
三岁居居发布了新的文献求助10
21秒前
72发布了新的文献求助10
23秒前
5001完成签到,获得积分10
23秒前
23秒前
不摇碧莲发布了新的文献求助10
23秒前
hustscholar发布了新的文献求助10
24秒前
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
twk发布了新的文献求助10
26秒前
科研通AI5应助xiubo128采纳,获得10
29秒前
SYLH应助整齐的香之采纳,获得50
29秒前
30秒前
31秒前
lxr2发布了新的文献求助20
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391