Multi-scale Features Fusion for the Detection of Tiny Bleeding in Wireless Capsule Endoscopy Images

胶囊内镜 计算机科学 特征(语言学) 人工智能 计算机视觉 模式识别(心理学) 放射科 医学 哲学 语言学
作者
Feng Lu,Wei Li,Song Lin,Chengwangli Peng,Zhiyong Wang,Bin Qian,Rajiv Ranjan,Hai Jin,Albert Y. Zomaya
出处
期刊:ACM transactions on the internet of things [Association for Computing Machinery]
卷期号:3 (1): 1-19 被引量:3
标识
DOI:10.1145/3477540
摘要

Wireless capsule endoscopy is a modern non-invasive Internet of Medical Imaging Things that has been increasingly used in gastrointestinal tract examination. With about one gigabyte image data generated for a patient in each examination, automatic lesion detection is highly desirable to improve the efficiency of the diagnosis process and mitigate human errors. Despite many approaches for lesion detection have been proposed, they mainly focus on large lesions and are not directly applicable to tiny lesions due to the limitations of feature representation. As bleeding lesions are a common symptom in most serious gastrointestinal diseases, detecting tiny bleeding lesions is extremely important for early diagnosis of those diseases, which is highly relevant to the survival, treatment, and expenses of patients. In this article, a method is proposed to extract and fuse multi-scale deep features for detecting and locating both large and tiny lesions. A feature extracting network is first used as our backbone network to extract the basic features from wireless capsule endoscopy images, and then at each layer multiple regions could be identified as potential lesions. As a result, the features maps of those potential lesions are obtained at each level and fused in a top-down manner to the fully connected layer for producing final detection results. Our proposed method has been evaluated on a clinical dataset that contains 20,000 wireless capsule endoscopy images with clinical annotation. Experimental results demonstrate that our method can achieve 98.9% prediction accuracy and 93.5% score, which has a significant performance improvement of up to 31.69% and 22.12% in terms of recall rate and score, respectively, when compared to the state-of-the-art approaches for both large and tiny bleeding lesions. Moreover, our model also has the highest AP and the best medical diagnosis performance compared to state-of-the-art multi-scale models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maestro_S发布了新的文献求助10
刚刚
慈祥的煎蛋完成签到,获得积分10
1秒前
2秒前
optical完成签到,获得积分10
2秒前
年轻的青柏完成签到,获得积分10
2秒前
osachon发布了新的文献求助30
2秒前
3秒前
希望天下0贩的0应助melody采纳,获得10
4秒前
4秒前
今后应助田国兵采纳,获得10
4秒前
寒冷威完成签到 ,获得积分20
4秒前
红丽阿妹完成签到,获得积分10
4秒前
欢呼香发布了新的文献求助10
5秒前
燮理阴阳发布了新的文献求助10
5秒前
6秒前
yiqifan完成签到,获得积分0
6秒前
沐沐子完成签到,获得积分10
6秒前
6秒前
大喜完成签到,获得积分10
7秒前
迷路凌柏完成签到 ,获得积分10
7秒前
7秒前
7秒前
perfect完成签到 ,获得积分10
7秒前
云深不知妖完成签到,获得积分10
8秒前
zyb完成签到,获得积分10
8秒前
fang完成签到,获得积分10
8秒前
way完成签到,获得积分10
8秒前
丁晨发布了新的文献求助10
8秒前
李繁蕊发布了新的文献求助10
9秒前
9秒前
光亮的元槐完成签到,获得积分10
9秒前
9秒前
空空完成签到 ,获得积分10
9秒前
烂漫煎饼发布了新的文献求助10
10秒前
seventonight2完成签到,获得积分10
10秒前
10秒前
lm完成签到,获得积分10
11秒前
不i发布了新的文献求助10
11秒前
清秋1001完成签到,获得积分10
12秒前
雾散完成签到,获得积分10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075387
求助须知:如何正确求助?哪些是违规求助? 3614193
关于积分的说明 11471266
捐赠科研通 3332286
什么是DOI,文献DOI怎么找? 1831633
邀请新用户注册赠送积分活动 901588
科研通“疑难数据库(出版商)”最低求助积分说明 820344