经颅直流电刺激
平衡(能力)
物理医学与康复
步态
认知
背外侧前额叶皮质
致盲
磁刺激
前额叶皮质
医学
神经科学
日常生活活动
脑刺激
心理学
功能性电刺激
康复
情感(语言学)
运动皮层
初级运动皮层
睡眠剥夺对认知功能的影响
认知策略
物理疗法
刺激
脑深部刺激
召回
老年人
促进
心理弹性
生活质量(医疗保健)
神经调节
最佳步行速度
作者
Junhong Zhou,Brad Manor,Wanting Yu,On‐Yee Lo,Natalia Gouskova,Ricardo Salvador,Racheli Katz,Pablo Cornejo Thumm,Marina Brozgol,Giulio Ruffini,Álvaro Pascual‐Leone,Lewis A. Lipsitz,Jeffrey M. Hausdorff
摘要
Objective Among older adults, the ability to stand or walk while performing cognitive tasks (ie, dual‐tasking) requires coordinated activation of several brain networks. In this multicenter, double‐blinded, randomized, and sham‐controlled study, we examined the effects of modulating the excitability of the left dorsolateral prefrontal cortex (L‐DLPFC) and the primary sensorimotor cortex (SM1) on dual‐task performance “costs” to standing and walking. Methods Fifty‐seven older adults without overt illness or disease completed 4 separate study visits during which they received 20 minutes of transcranial direct current stimulation (tDCS) optimized to facilitate the excitability of the L‐DLPFC and SM1 simultaneously, or each region separately, or neither region (sham). Before and immediately after stimulation, participants completed a dual‐task paradigm in which they were asked to stand and walk with and without concurrent performance of a serial‐subtraction task. Results tDCS simultaneously targeting the L‐DLPFC and SM1, as well as tDCS targeting the L‐DLPFC alone, mitigated dual‐task costs to standing and walking to a greater extent than tDCS targeting SM1 alone or sham ( p < 0.02). Blinding efficacy was excellent and participant subjective belief in the type of stimulation received (real or sham) did not contribute to the observed functional benefits of tDCS. Interpretation These results demonstrate that in older adults, dual‐task decrements may be amenable to change and implicate L‐DPFC excitability as a modifiable component of the control system that enables dual‐task standing and walking. tDCS may be used to improve resilience and the ability of older results to walk and stand under challenging conditions, potentially enhancing everyday functioning and reducing fall risks. ANN NEUROL 2021;90:428–439
科研通智能强力驱动
Strongly Powered by AbleSci AI