Differentiable Compound Optics and Processing Pipeline Optimization for End-to-end Camera Design

计算机科学 管道(软件) 图像处理 人工神经网络 光学设计 人工智能 信号处理 计算机硬件 软件 图像(数学) 数字信号处理 程序设计语言
作者
Ethan Tseng,Ali Mosleh,Fahim Mannan,Karl St‐Arnaud,Avinash Sharma,Yifan Peng,Alexander Braun,Derek Nowrouzezahrai,Jean‐François Lalonde,Felix Heide
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (2): 1-19 被引量:51
标识
DOI:10.1145/3446791
摘要

Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotive camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缤月完成签到,获得积分10
刚刚
健忘的蓉完成签到 ,获得积分10
2秒前
米缸发布了新的文献求助10
3秒前
3秒前
3秒前
6秒前
Jessica发布了新的文献求助10
7秒前
米缸完成签到,获得积分10
7秒前
科研圣手发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
小米发布了新的文献求助10
11秒前
13秒前
13秒前
星辰大海应助ASDS采纳,获得10
14秒前
领导范儿应助夏xia采纳,获得10
16秒前
18秒前
Evan发布了新的文献求助30
18秒前
19秒前
平淡的谷秋完成签到,获得积分10
19秒前
19秒前
19秒前
melody发布了新的文献求助10
19秒前
hzh完成签到 ,获得积分10
20秒前
20秒前
高高兴兴完成签到,获得积分10
21秒前
21秒前
22秒前
完美世界应助张靖松采纳,获得10
22秒前
伯赏夏彤发布了新的文献求助10
23秒前
taku发布了新的文献求助10
23秒前
24秒前
24秒前
科研圣手完成签到,获得积分10
24秒前
大力方盒发布了新的文献求助10
25秒前
26秒前
刘凯发布了新的文献求助10
26秒前
小文发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870497
求助须知:如何正确求助?哪些是违规求助? 3412690
关于积分的说明 10680748
捐赠科研通 3137124
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073