Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

元数据 自回归模型 产品(数学) 计算机科学 时间序列 人工神经网络 机器学习 数据挖掘 计量经济学 人工智能 万维网 数学 几何学 经济
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (6): 1982-1997 被引量:5
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤浩宏发布了新的文献求助30
刚刚
LILILI完成签到,获得积分10
3秒前
3秒前
坤坤蹦蹦跳跳完成签到,获得积分10
3秒前
草莓雪酪完成签到,获得积分10
6秒前
HeAuBook应助灯灯采纳,获得20
7秒前
7秒前
shawn发布了新的文献求助10
8秒前
小雨发布了新的文献求助10
8秒前
天空中飞翔的鱼应助Doki采纳,获得10
10秒前
10秒前
Miracle完成签到,获得积分10
11秒前
13秒前
13秒前
17秒前
violet发布了新的文献求助10
17秒前
害怕的灯泡完成签到,获得积分10
17秒前
吴糖完成签到,获得积分10
18秒前
18秒前
科目三应助poker84采纳,获得10
18秒前
renheit关注了科研通微信公众号
18秒前
宇称yu完成签到 ,获得积分10
19秒前
wocao完成签到 ,获得积分10
20秒前
20秒前
lili发布了新的文献求助30
21秒前
MchemG应助小雨采纳,获得10
21秒前
22秒前
昔年完成签到,获得积分10
23秒前
yaya发布了新的文献求助10
24秒前
zero完成签到 ,获得积分10
24秒前
24秒前
zzcres完成签到,获得积分10
24秒前
24秒前
天空中飞翔的鱼应助Doki采纳,获得10
25秒前
肥猫完成签到,获得积分10
25秒前
25秒前
大宝完成签到,获得积分10
25秒前
cassie完成签到,获得积分10
25秒前
luqong发布了新的文献求助10
26秒前
李健的小迷弟应助emm采纳,获得10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977850
求助须知:如何正确求助?哪些是违规求助? 3522015
关于积分的说明 11211196
捐赠科研通 3259254
什么是DOI,文献DOI怎么找? 1799573
邀请新用户注册赠送积分活动 878417
科研通“疑难数据库(出版商)”最低求助积分说明 806899