已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepGCNs: Making GCNs Go as Deep as CNNs

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 分割 实施 源代码 编码(集合论) 人工神经网络 模式识别(心理学) 软件工程 集合(抽象数据类型) 程序设计语言 操作系统
作者
Guohao Li,Matthias Mueller,Guocheng Qian,Itzel C. Delgadillo,Abdulellah Abualshour,Ali Thabet,Bernard Ghanem
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 6923-6939 被引量:154
标识
DOI:10.1109/tpami.2021.3074057
摘要

Convolutional neural networks (CNNs) have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to train very deep networks. Despite their huge success in many tasks, CNNs do not work well with non-euclidean data, which is prevalent in many real-world applications. Graph Convolutional Networks (GCNs) offer an alternative that allows for non-Eucledian data input to a neural network. While GCNs already achieve encouraging results, they are currently limited to architectures with a relatively small number of layers, primarily due to vanishing gradients during training. This work transfers concepts such as residual/dense connections and dilated convolutions from CNNs to GCNs in order to successfully train very deep GCNs. We show the benefit of using deep GCNs (with as many as 112 layers) experimentally across various datasets and tasks. Specifically, we achieve very promising performance in part segmentation and semantic segmentation on point clouds and in node classification of protein functions across biological protein-protein interaction (PPI) graphs. We believe that the insights in this work will open avenues for future research on GCNs and their application to further tasks not explored in this paper. The source code for this work is available at https://github.com/lightaime/deep_gcns_torch and https://github.com/lightaime/deep_gcns for PyTorch and TensorFlow implementations respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术垃圾完成签到 ,获得积分10
刚刚
诺诺完成签到 ,获得积分10
刚刚
微笑的铸海完成签到 ,获得积分10
1秒前
脑洞疼应助SMULJL采纳,获得10
1秒前
所所应助nassim采纳,获得10
2秒前
夏天无完成签到 ,获得积分10
2秒前
岳小龙完成签到 ,获得积分10
2秒前
博林大师完成签到,获得积分10
3秒前
梦璃完成签到 ,获得积分10
4秒前
4秒前
Lexi完成签到 ,获得积分10
5秒前
战神林北完成签到,获得积分10
6秒前
RerrentLinden完成签到,获得积分10
7秒前
叶财财完成签到,获得积分10
9秒前
vkk完成签到 ,获得积分10
9秒前
研友_Zb1rln完成签到,获得积分10
9秒前
天元神尊完成签到 ,获得积分10
10秒前
hl发布了新的文献求助10
10秒前
单身的老太完成签到,获得积分10
11秒前
kenti2023完成签到 ,获得积分10
11秒前
代代完成签到 ,获得积分10
11秒前
Luna完成签到 ,获得积分10
12秒前
夜雨声烦完成签到,获得积分10
13秒前
Zhang完成签到 ,获得积分10
13秒前
dll完成签到 ,获得积分10
14秒前
碗在水中央完成签到 ,获得积分0
14秒前
Cheng完成签到 ,获得积分10
14秒前
Alice完成签到 ,获得积分10
14秒前
龙骑士25完成签到 ,获得积分10
15秒前
大模型应助落忆采纳,获得10
17秒前
SciGPT应助林声采纳,获得10
18秒前
beloved完成签到 ,获得积分10
18秒前
欣喜的缘分完成签到 ,获得积分10
19秒前
不甜完成签到 ,获得积分10
19秒前
Ljy完成签到 ,获得积分10
21秒前
广东第一深情完成签到,获得积分10
21秒前
zzzz完成签到 ,获得积分10
22秒前
22秒前
刘国建郭菱香完成签到 ,获得积分10
22秒前
ghost完成签到 ,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792392
求助须知:如何正确求助?哪些是违规求助? 3336625
关于积分的说明 10281633
捐赠科研通 3053359
什么是DOI,文献DOI怎么找? 1675575
邀请新用户注册赠送积分活动 803557
科研通“疑难数据库(出版商)”最低求助积分说明 761457