亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++

跟踪(教育) 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 实时计算 生物 渔业 心理学 教育学 语言学 哲学
作者
He Wang,Song Zhang,Shili Zhao,Qi Wang,Daoliang Li,Ran Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106512-106512 被引量:119
标识
DOI:10.1016/j.compag.2021.106512
摘要

In recirculating aquaculture system, the abnormal behavior of fish is usually caused by poor water quality, hypoxia or diseases. Delayed recognition of this behavior will lead to large number of fish deaths. Thus, real-time detection and tracking of fish that behaviors abnormally is an effective way to promote the fish welfare and to improve the survival rate as well as economic benefits of aquaculture. However, due to the high-density breeding, the targets in the fish images are often quite small and in occlusion, which causes high false detection and target loss rate. This article proposes a combined end-to-end neural network to detect and track the abnormal behavior of porphyry seabream. The detection algorithm passes the initial value of the target into the tracking algorithm, and the tracking algorithm tracks subsequent frames to achieve end-to-end abnormal fish behavior detection and achieve high-speed and accurate tracking of abnormal behavior individuals. In the target detection part, YOLOV5s is improved by incorporating multi-level features and adding feature mapping. Compared with the original network, the detection precision AP50:95 is increased by 8.8% while AP50 reaches 99.4%. In the target tracking part, this paper achieves multi-target tracking of abnormal fish based on single-target tracking algorithm SiamRPN++. The tracking precision is 76.7%. By combining the two approaches, individual fish with abnormal behavior can be detected precisely and tracked in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning_qing完成签到 ,获得积分10
18秒前
璇别给璇别的求助进行了留言
1分钟前
Li应助科研通管家采纳,获得10
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
Fischl完成签到 ,获得积分10
2分钟前
自然幼翠完成签到,获得积分20
3分钟前
自然幼翠发布了新的文献求助30
3分钟前
zm发布了新的文献求助10
3分钟前
Li应助科研通管家采纳,获得10
4分钟前
Li应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
bc应助科研通管家采纳,获得30
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
zm完成签到,获得积分10
5分钟前
5分钟前
getgetting发布了新的文献求助10
5分钟前
5分钟前
zzzjh发布了新的文献求助10
6分钟前
小吴发布了新的文献求助10
6分钟前
今后应助zzzjh采纳,获得10
6分钟前
6分钟前
zoey发布了新的文献求助10
6分钟前
搜集达人应助zoey采纳,获得10
6分钟前
Li应助科研通管家采纳,获得10
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
h0jian09完成签到,获得积分10
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
不胜玖完成签到 ,获得积分10
9分钟前
清秀灵薇完成签到,获得积分10
9分钟前
一只榴莲发布了新的文献求助10
9分钟前
9分钟前
搜集达人应助一只榴莲采纳,获得10
9分钟前
9分钟前
zzzjh发布了新的文献求助10
9分钟前
11发布了新的文献求助10
9分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714