Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++

跟踪(教育) 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 实时计算 生物 渔业 心理学 教育学 语言学 哲学
作者
He Wang,Song Zhang,Shili Zhao,Qi Wang,Daoliang Li,Ran Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106512-106512 被引量:170
标识
DOI:10.1016/j.compag.2021.106512
摘要

In recirculating aquaculture system, the abnormal behavior of fish is usually caused by poor water quality, hypoxia or diseases. Delayed recognition of this behavior will lead to large number of fish deaths. Thus, real-time detection and tracking of fish that behaviors abnormally is an effective way to promote the fish welfare and to improve the survival rate as well as economic benefits of aquaculture. However, due to the high-density breeding, the targets in the fish images are often quite small and in occlusion, which causes high false detection and target loss rate. This article proposes a combined end-to-end neural network to detect and track the abnormal behavior of porphyry seabream. The detection algorithm passes the initial value of the target into the tracking algorithm, and the tracking algorithm tracks subsequent frames to achieve end-to-end abnormal fish behavior detection and achieve high-speed and accurate tracking of abnormal behavior individuals. In the target detection part, YOLOV5s is improved by incorporating multi-level features and adding feature mapping. Compared with the original network, the detection precision AP50:95 is increased by 8.8% while AP50 reaches 99.4%. In the target tracking part, this paper achieves multi-target tracking of abnormal fish based on single-target tracking algorithm SiamRPN++. The tracking precision is 76.7%. By combining the two approaches, individual fish with abnormal behavior can be detected precisely and tracked in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
陈丽媛完成签到,获得积分10
3秒前
江舟添盛望完成签到 ,获得积分10
3秒前
3秒前
平平完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
cunzhang完成签到,获得积分10
4秒前
GG完成签到,获得积分10
4秒前
Yu发布了新的文献求助10
5秒前
JusLovin发布了新的文献求助10
5秒前
Kar发布了新的文献求助10
5秒前
山槐完成签到,获得积分10
5秒前
完美世界应助雪域采纳,获得10
6秒前
苏11完成签到,获得积分10
6秒前
duckweedyan发布了新的文献求助10
7秒前
7秒前
小二郎应助Jim luo采纳,获得10
8秒前
科研通AI6.1应助鹏飞九霄采纳,获得10
8秒前
JoaquinH完成签到,获得积分10
8秒前
8秒前
klkl发布了新的文献求助10
8秒前
默默善愁发布了新的文献求助80
8秒前
手术刀发布了新的文献求助10
8秒前
9秒前
共享精神应助傻傻的含双采纳,获得10
9秒前
乐乐应助呆萌连碧采纳,获得10
9秒前
小鸟完成签到,获得积分20
9秒前
知性的幼晴完成签到,获得积分10
10秒前
爱吃米线完成签到 ,获得积分10
11秒前
11秒前
且放青山远完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
大个应助倒吸一口凉气采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758723
求助须知:如何正确求助?哪些是违规求助? 5517424
关于积分的说明 15391899
捐赠科研通 4895959
什么是DOI,文献DOI怎么找? 2633441
邀请新用户注册赠送积分活动 1581527
关于科研通互助平台的介绍 1537155