已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:83
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙孙应助北水穼采纳,获得10
3秒前
3秒前
李爱国应助Jason190采纳,获得10
5秒前
6秒前
麟书夷完成签到 ,获得积分10
7秒前
龟龟不想看文献完成签到,获得积分10
7秒前
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
威武灵阳完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
小叶同学发布了新的文献求助10
12秒前
沛山应助嘉宾采纳,获得10
14秒前
科研通AI6应助嘻嘻采纳,获得10
14秒前
15秒前
Seameng完成签到 ,获得积分10
16秒前
齐静春发布了新的文献求助10
17秒前
顾矜应助俊逸的平卉采纳,获得10
22秒前
独特的夜阑完成签到 ,获得积分10
23秒前
无名花生完成签到 ,获得积分0
28秒前
打打应助阿烨采纳,获得10
28秒前
szhshq发布了新的文献求助10
30秒前
隐形曼青应助每天自然醒采纳,获得10
34秒前
小怪兽完成签到 ,获得积分10
35秒前
Jason190完成签到,获得积分10
35秒前
36秒前
CCsouljump完成签到 ,获得积分10
38秒前
39秒前
FashionBoy应助风之子采纳,获得80
39秒前
阿烨发布了新的文献求助10
40秒前
大模型应助好好睡觉采纳,获得10
48秒前
雪雪完成签到 ,获得积分10
51秒前
wdzgx完成签到 ,获得积分10
52秒前
YifanWang应助ybm3s采纳,获得20
56秒前
59秒前
下雨天完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375008
求助须知:如何正确求助?哪些是违规求助? 3871346
关于积分的说明 12066589
捐赠科研通 3514181
什么是DOI,文献DOI怎么找? 1928442
邀请新用户注册赠送积分活动 970138
科研通“疑难数据库(出版商)”最低求助积分说明 868859