IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation

计算机科学 分割 人工智能 块(置换群论) 卷积神经网络 特征(语言学) 编码器 深度学习 图像分割 模式识别(心理学) 数学 语言学 哲学 几何学 操作系统
作者
Siyuan Chen,Yanni Zou,Peter Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:135: 104551-104551 被引量:30
标识
DOI:10.1016/j.compbiomed.2021.104551
摘要

Accurate segmentation of medical images plays an essential role in their analysis and has a wide range of research and application values in fields of practice such as medical research, disease diagnosis, disease analysis, and auxiliary surgery. In recent years, deep convolutional neural networks have been developed that show strong performance in medical image segmentation. However, because of the inherent challenges of medical images, such as irregularities of the dataset and the existence of outliers, segmentation approaches have not demonstrated sufficiently accurate and reliable results for clinical employment. Our method is based on three key ideas: (1) integrating the BConvLSTM block and the Attention block to reduce the semantic gap between the encoder and decoder feature maps to make the two feature maps more homogeneous, (2) factorizing convolutions with a large filter size by Redesigned Inception, which uses a multiscale feature fusion method to significantly increase the effective receptive field, and (3) devising a deep convolutional neural network with multiscale feature fusion and a Attentive BConvLSTM mechanism, which integrates the Attentive BConvLSTM block and the Redesigned Inception block into an encoder-decoder model called Attentive BConvLSTM U-Net with Redesigned Inception (IBA-U-Net). Our proposed architecture, IBA-U-Net, has been compared with the U-Net and state-of-the-art segmentation methods on three publicly available datasets, the lung image segmentation dataset, skin lesion image dataset, and retinal blood vessel image segmentation dataset, each with their unique challenges, and it has improved the prediction performance even with slightly less calculation expense and fewer network parameters. By devising a deep convolutional neural network with a multiscale feature fusion and Attentive BConvLSTM mechanism, medical image segmentation of different tasks can be completed effectively and accurately with only 45% of U-Net parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助donson采纳,获得10
刚刚
学渣路过完成签到,获得积分0
刚刚
刚刚
刚刚
Peng完成签到,获得积分10
1秒前
2秒前
2秒前
克莱完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
FCL发布了新的文献求助10
6秒前
8秒前
8秒前
Pendragon发布了新的文献求助10
8秒前
zby完成签到,获得积分10
9秒前
鳄鱼蛋完成签到,获得积分10
9秒前
10秒前
子凯发布了新的文献求助10
10秒前
昏睡的半鬼完成签到 ,获得积分10
10秒前
joy发布了新的文献求助30
10秒前
10秒前
donson发布了新的文献求助10
11秒前
11秒前
11秒前
lixiang完成签到 ,获得积分10
11秒前
英俊的铭应助cwm采纳,获得10
11秒前
12秒前
13秒前
冯丽雪完成签到,获得积分10
14秒前
称心千凝发布了新的文献求助10
15秒前
万能图书馆应助我是人坤采纳,获得10
15秒前
嗑cp完成签到 ,获得积分10
16秒前
17秒前
子凯完成签到,获得积分10
17秒前
蜘蛛发布了新的文献求助10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793534
求助须知:如何正确求助?哪些是违规求助? 3338480
关于积分的说明 10289803
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676215
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761812