Computational molecular spectroscopy

可解释性 计算机科学 领域(数学) 光学(聚焦) 表征(材料科学) 计算模型 材料科学 生化工程 纳米技术 人工智能 物理 数学 工程类 光学 纯数学
作者
Vincenzo Barone,Silvia Alessandrini,Małgorzata Biczysko,James R. Cheeseman,David C. Clary,Anne B. McCoy,Ryan J. DiRisio,Frank Neese,Mattia Melosso,Cristina Puzzarini
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:1 (1) 被引量:348
标识
DOI:10.1038/s43586-021-00034-1
摘要

Spectroscopic techniques can probe molecular systems non-invasively and investigate their structure, properties and dynamics in different environments and physico-chemical conditions. Different spectroscopic techniques (spanning different ranges of the electromagnetic field) and their combination can lead to a more comprehensive picture of investigated systems. However, the growing sophistication of these experimental techniques makes it increasingly complex to interpret spectroscopic results without the help of computational chemistry. Computational molecular spectroscopy, born as a branch of quantum chemistry to provide predictions of spectroscopic properties and features, emerged as an independent and highly specialized field but has progressively evolved to become a general tool also employed by experimentally oriented researchers. In this Primer, we focus on the computational characterization of medium-sized molecular systems by means of different spectroscopic techniques. We first provide essential information about the characteristics, accuracy and limitations of the available computational approaches, and select examples to illustrate common trends and outcomes of general validity that can be used for modelling spectroscopic phenomena. We emphasize the need for estimating error bars and limitations, coupling accuracy with interpretability, touch upon data deposition and reproducibility issues, and discuss the results in terms of widely recognized chemical concepts. Puzzarini and colleagues explore the computational characterization of medium-sized molecular systems using different spectroscopic techniques. The Primer provides essential information about the characteristics, accuracy and limitations of current computational approaches used for modelling spectroscopic phenomena with a focus on estimating error bars, limitations and coupling interpretability to accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snieno发布了新的文献求助10
1秒前
花花发布了新的文献求助10
2秒前
3秒前
赘婿应助科研通管家采纳,获得30
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
半柚发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
hana应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
迷路曼雁应助科研通管家采纳,获得20
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
眼角流星完成签到,获得积分10
6秒前
8秒前
TsingFlower发布了新的文献求助10
9秒前
18岁187腹肌纯情男高完成签到,获得积分10
11秒前
13秒前
花花完成签到,获得积分10
13秒前
joleisalau发布了新的文献求助10
15秒前
18秒前
123完成签到 ,获得积分10
20秒前
王文静发布了新的文献求助10
22秒前
ccc完成签到,获得积分10
23秒前
byb完成签到 ,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366