肝星状细胞
线粒体
细胞生物学
糖酵解
厌氧糖酵解
肝损伤
生物
生物化学
内分泌学
新陈代谢
标识
DOI:10.1016/j.hbpd.2021.04.010
摘要
Upon liver injury, quiescent hepatic stellate cells (qHSCs), reside in the perisinusoidal space, phenotypically transdifferentiate into myofibroblast-like cells (MFBs). The qHSCs in the normal liver are less fibrogenic, migratory, and also have less proliferative potential. However, activated HSCs (aHSCs) are more fibrogenic and have a high migratory and proliferative MFBs phenotype. HSCs activation is a highly energetic process that needs abundant intracellular energy in the form of adenosine triphosphate (ATP) for the synthesis of extracellular matrix (ECM) in the injured liver to substantiate the injury.The articles were collected through PubMed and EMBASE using search terms "mitochondria and hepatic stellate cells", "mitochondria and HSCs", "mitochondria and hepatic fibrosis", "mitochondria and liver diseases", and "mitochondria and chronic liver disease", and relevant publications published before September 31, 2020 were included in this review.Mitochondria homeostasis is affected during HSCs activation. Mitochondria in aHSCs are highly energetic and are in a high metabolically active state exhibiting increased activity such as glycolysis and respiration. aHSCs have high glycolytic enzymes expression and glycolytic activity induced by Hedgehog (Hh) signaling from injured hepatocytes. Increased glycolysis and aerobic glycolysis (Warburg effect) end-products in aHSCs consequently activate the ECM-related gene expressions. Increased Hh signaling from injured hepatocytes downregulates peroxisome proliferator-activated receptor-γ expression and decreases lipogenesis in aHSCs. Glutaminolysis and tricarboxylic acid cycle liberate ATPs that fuel HSCs to proliferate and produce ECM during their activation.Available studies suggest that mitochondria functions can increase in parallel with HSCs activation. Therefore, mitochondrial modulators should be tested in an elaborate manner to control or prevent the HSCs activation during liver injury to subsequently regress hepatic fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI