18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Quinta发布了新的文献求助10
刚刚
1秒前
乐乐完成签到,获得积分10
1秒前
1秒前
梁寒完成签到,获得积分10
1秒前
yir发布了新的文献求助10
1秒前
领导范儿应助图南采纳,获得10
1秒前
1秒前
z11关闭了z11文献求助
2秒前
科研通AI6应助天涯赤子采纳,获得10
2秒前
2秒前
芒果布丁发布了新的文献求助10
2秒前
soon发布了新的文献求助10
2秒前
2秒前
浮生发布了新的文献求助10
3秒前
可爱的函函应助kk采纳,获得10
3秒前
孤独静枫发布了新的文献求助10
3秒前
顺利凌寒发布了新的文献求助10
3秒前
3秒前
4秒前
吉以寒发布了新的文献求助10
4秒前
852应助迅速的曼梅采纳,获得10
4秒前
小李发布了新的文献求助10
4秒前
4秒前
yuyuyuan完成签到,获得积分10
5秒前
5秒前
善学以致用应助whl采纳,获得10
5秒前
科目三应助chocolate采纳,获得10
5秒前
果实发布了新的文献求助10
5秒前
6秒前
6秒前
呜呼完成签到 ,获得积分20
6秒前
6秒前
6秒前
6秒前
7秒前
雨濛完成签到 ,获得积分10
7秒前
K_关注了科研通微信公众号
7秒前
留胡子的聋五完成签到,获得积分10
7秒前
迷桥应助贾大大采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084922
求助须知:如何正确求助?哪些是违规求助? 4301422
关于积分的说明 13403320
捐赠科研通 4125991
什么是DOI,文献DOI怎么找? 2259687
邀请新用户注册赠送积分活动 1263861
关于科研通互助平台的介绍 1198056