A Radiomics Signature-Based Nomogram to Predict the Progression-Free Survival of Patients With Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization Plus Radiofrequency Ablation

医学 肝细胞癌 经导管动脉化疗栓塞 无线电技术 列线图 队列 单变量 Lasso(编程语言) 内科学 肿瘤科 一致性 放射科 射频消融术 多元统计 比例危险模型 烧蚀 统计 万维网 计算机科学 数学
作者
Shiji Fang,Linqiang Lai,Jinyu Zhu,Liyun Zheng,Yuanyuan Xu,Weiqian Chen,Fazong Wu,Xulu Wu,Minjiang Chen,Qiaoyou Weng,Jiansong Ji,Zhongwei Zhao,Jianfei Tu
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media]
卷期号:8 被引量:7
标识
DOI:10.3389/fmolb.2021.662366
摘要

Objective: The study aims to establish an magnetic resonance imaging radiomics signature-based nomogram for predicting the progression-free survival of intermediate and advanced hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) plus radiofrequency ablation Materials and Methods: A total of 113 intermediate and advanced HCC patients treated with TACE and RFA were eligible for this study. Patients were classified into a training cohort ( n = 78 cases) and a validation cohort ( n = 35 cases). Radiomics features were extracted from contrast-enhanced T1W images by analysis kit software. Dimension reduction was conducted to select optimal features using the least absolute shrinkage and selection operator (LASSO). A rad-score was calculated and used to classify the patients into high-risk and low-risk groups and further integrated into multivariate Cox analysis. Two prediction models based on radiomics signature combined with or without clinical factors and a clinical model based on clinical factors were developed. A nomogram comcined radiomics signature and clinical factors were established and the concordance index (C-index) was used for measuring discrimination ability of the model, calibration curve was used for measuring calibration ability, and decision curve and clinical impact curve are used for measuring clinical utility. Results: Eight radiomics features were selected by LASSO, and the cut-off of the Rad-score was 1.62. The C-index of the radiomics signature for PFS was 0.646 (95%: 0.582–0.71) in the training cohort and 0.669 (95% CI:0.572–0.766) in validation cohort. The median PFS of the low-risk group [30.4 (95% CI: 19.41–41.38)] months was higher than that of the high-risk group [8.1 (95% CI: 4.41–11.79)] months in the training cohort (log rank test, z = 16.58, p < 0.001) and was verified in the validation cohort. Multivariate Cox analysis showed that BCLC stage [hazard ratio (HR): 2.52, 95% CI: 1.42–4.47, p = 0.002], AFP level (HR: 2.01, 95% CI: 1.01–3.99 p = 0.046), time interval (HR: 0.48, 95% CI: 0.26–0.87, p = 0.016) and radiomics signature (HR 2.98, 95% CI: 1.60–5.51, p = 0.001) were independent prognostic factors of PFS in the training cohort. The C-index of the combined model in the training cohort was higher than that of clinical model for PFS prediction [0.722 (95% CI: 0.657–0.786) vs. 0.669 (95% CI: 0.657–0.786), p <0.001]. Similarly, The C-index of the combined model in the validation cohort, was higher than that of clinical model [0.821 (95% CI: 0.726–0.915) vs. 0.76 (95% CI: 0.667–0.851), p = 0.004]. The calibration curve, decision curve and clinical impact curve showed that the nomogram can be used to accurately predict the PFS of patients. Conclusion: The radiomics signature was a prognostic risk factor, and a nomogram combined radiomics and clinical factors acts as a new strategy for predicted the PFS of intermediate and advanced HCC treated with TACE plus RFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤一梦完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
庞伟泽发布了新的文献求助10
3秒前
cell发布了新的文献求助10
4秒前
科目三应助容若采纳,获得10
4秒前
你在教我做事啊完成签到 ,获得积分10
4秒前
4秒前
4秒前
怕黑的翠绿完成签到 ,获得积分10
5秒前
共享精神应助dpp采纳,获得10
6秒前
zhq发布了新的文献求助10
7秒前
aaaaarfv发布了新的文献求助10
7秒前
小白完成签到,获得积分10
9秒前
研友_LBR9gL发布了新的文献求助10
10秒前
俊逸的凝珍完成签到,获得积分10
10秒前
10秒前
橙花完成签到,获得积分10
10秒前
学术小白发布了新的文献求助10
11秒前
Jasper应助北峰采纳,获得10
11秒前
魔幻的傲儿完成签到,获得积分10
11秒前
SciGPT应助hongjing采纳,获得10
11秒前
华仔应助GQ采纳,获得10
12秒前
Xiaoli发布了新的文献求助10
12秒前
13秒前
sugarballer完成签到,获得积分0
14秒前
15秒前
李爱国应助学术神经采纳,获得10
17秒前
fanqinge发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
明理含莲应助超级小熊猫采纳,获得10
19秒前
21秒前
catbird完成签到,获得积分20
21秒前
专一的易真完成签到 ,获得积分10
23秒前
CHBW发布了新的文献求助10
23秒前
李爱国应助舒心储采纳,获得10
23秒前
23秒前
24秒前
Owen应助哼1采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937