材料科学
电子结构
极化(电化学)
化学物理
吸附
选择性
载流子
晶体结构
基本电荷
动力学
极地的
表面电荷
光化学
联轴节(管道)
催化作用
纳米技术
光电子学
Crystal(编程语言)
电荷(物理)
表面改性
表面状态
反应性(心理学)
作者
Yutang Yu,Zijian Zhu,Pengwei Jia,Fang Chen,Hongwei Huang
标识
DOI:10.1002/aenm.202506247
摘要
ABSTRACT The sluggish charge transfer and weak surface‐site reactivity critically limit CO 2 photoreduction efficiency. While the crystal structure dictates bulk charge separation, the surface atomic configuration governs reaction kinetics and thermodynamics. Thus, concurrent optimization of both domains is essential. In this work, we present a concise strategy for the selective conversion of CO 2 to CO using polar Bi 4 O 5 Br 2 nanosheets modified with Cu atoms to induce bulk polarization enhancement and symbiotic electronic structure regulation (SESR). The SESR effect establishes a dynamic coupling between internal polarization and surface electronic states. Cu incorporation into the asymmetric Bi 4 O 5 Br 2 layered framework enhances intrinsic polarization through polar‐unit stacking, thereby extending carrier lifetime by 48.6‐fold and facilitating efficient charge separation and migration. Meanwhile, the strengthened polarization modulates the surface electronic configuration of Cu sites, promoting CO 2 adsorption and activation, as supported by experimental characterization and theoretical simulation under polarized conditions. Without any sacrificial agents or sensitizers, Cu‐Bi 4 O 5 Br 2 achieves a remarkable CO 2 ‐to‐CO rate of 45.34 µmol g −1 h −1 with high selectivity in pure water. This work elucidates the cooperative interplay between polarization fields and surface electronic regulation, providing a generalizable paradigm for manipulating charge dynamics and catalytic‐site chemistry toward efficient solar‐driven CO 2 conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI