非谐性
凝聚态物理
声子
热电效应
热电材料
联轴节(管道)
材料科学
散射
声子散射
有效质量(弹簧-质量系统)
半导体
热导率
热的
物理
带隙
玻尔兹曼常数
电子
格子(音乐)
玻尔兹曼方程
塞贝克系数
拉伸应变
四次方程
热传导
电子能带结构
热辐射计
散射率
作者
X. Zeng,Guangming Niu,Xiaowei Wang,Jutao Jiang,Yutong Zhang,Anmin Chen,Mingxing Jin,Kaijun Yuan,Laizhi Sui
标识
DOI:10.1021/acs.jpclett.5c03228
摘要
Mixed-anion semiconductors exhibit ultralow lattice thermal conductivity, yet conventional Boltzmann transport, including only three-phonon scattering, cannot capture their strong anharmonicity. Here, first-principles simulations incorporating four-phonon interactions and coherent phonon transport reveal strain-driven thermoelectric enhancement in CuBiSeCl2. Four-phonon scattering strengthens mode coupling and slightly enhances phonon coherence, while tensile strain suppresses it through vibrational mode decoupling, reducing the coherent contribution by 17% and yielding κL = 0.33 W m-1 K-1 at 300 K. Tensile strain notably enhances quartic anharmonicity and weakens Cu-Cl bonding. Simultaneously, it narrows the band gap to 1.22 eV and lowers the electron effective mass along the b axis to 0.211 m0, improving the power factor to 0.29 mW m-1 K-2 at 700 K. The combined thermal and electronic optimization produces a peak ZT ≈ 0.8 at 800 K for n-type doping, highlighting that four-phonon scattering, phonon coherence, and strain engineering jointly govern heat and charge transport in strongly anharmonic thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI