Beyond Conventional Cooling: Advanced Micro/Nanostructures for Managing Extreme Heat Flux

电子设备和系统的热管理 数码产品 传热 材料科学 热的 电力电子 高温 机械工程 消散 强化传热 电子元件 强化传热 热流密度 系统工程 纳米技术 工程物理 热管 散热片 功率(物理) 航程(航空) 计算机科学 电子系统 钥匙(锁)
作者
Yuankun Zhang,Huajie Li,Zhou Yuhang,Jun Ma,Keng-Te Lin,Han Lin,Chunsheng Guo,Baohua Jia
出处
期刊:Advanced Materials [Wiley]
卷期号:: e04706-e04706
标识
DOI:10.1002/adma.202504706
摘要

Abstract The surge in device integration has escalated thermal losses, compromising performance and safety, necessitating advanced thermal management solutions with extraordinary heat flux capabilities to address power and heat dissipation challenges in high heat‐flux electronics. Micro/nanostructures have emerged as promising solutions for targeted heat dissipation in electronics due to their outstanding performance, miniature footprint, and design flexibility. However, a comprehensive review of recent advancements in heat transfer control via micro/nanostructures and their current and potential applications for high heat‐flux thermal management, particularly for electronic devices, remains lacking. This review systematically examines the fundamental heat transfer mechanisms enabled by micro/nanostructures at multiscales. A wide range of bio‐inspired or engineered designs are highlighted as formidable candidates for highly efficient thermal and hydrodynamic metamaterials. Novel micro/nano‐patterns that significantly contribute to the modulation of coupled heat transfer processes in practical applications for electronic thermal management are elaborated. Furthermore, the strengths and limitations of existing design and manufacturing methods for micro/nanostructures are comparatively summarized. Finally, key challenges and prospects of micro/nanostructure‐based thermal management techniques are discussed, drawing insights from previous applications. This review underscores the transformative potential of micro/nanostructures in achieving reliable, sustainable, and targeted thermal management for high‐performance electronic devices in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋晨瑜发布了新的文献求助10
1秒前
嘉星糖完成签到,获得积分10
2秒前
Ava应助仵一采纳,获得10
3秒前
初空月儿发布了新的文献求助10
4秒前
7秒前
hao发布了新的文献求助10
8秒前
混沌武士完成签到 ,获得积分10
8秒前
Ally发布了新的文献求助30
9秒前
RSU完成签到,获得积分10
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
lalala应助科研通管家采纳,获得10
9秒前
鳄鱼应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
lalala应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得20
10秒前
鳄鱼应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
xing完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Cleo应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
风中冰香应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270