Drug Repositioning Based on Expert Knowledge Augmented Graph Neural Network

计算机科学 药物数据库 节点(物理) 人工智能 机器学习 药物重新定位 图形 桥(图论) 人工神经网络 知识图 领域知识 数据挖掘 专家系统 知识工程 语义网 知识库
作者
Zhenpeng Wu,Cheng Yan,Jiamin Chen,Siyang Xiao,Jianliang Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-12
标识
DOI:10.1109/jbhi.2025.3633239
摘要

Drug repositioning is critical in accelerating drug discovery, which identifies new indications for existing drugs by modeling drug-disease associations. Compared to traditional methods, graph neural networks (GNNs) have recently gained widespread attention due to their ability to effectively aggregate information from neighboring nodes in drug-disease heterogeneous graphs. The GNN-based methods need effective node embeddings for information aggregation. However, they generate the node embeddings by random initialization, rather than incorporating the high-quality expert knowledge involving biological mechanisms in the databases. This limits their capacity to generate interpretable node embeddings aligned with expert knowledge. To bridge this gap, we develop a novel framework dubbed DReKGNN (Drug Repositioning based on expert Knowledge augmented Graph Neural Network). To be specific, DReKGNN will first adopt large language models (LLMs) as a semantic bridge between expert knowledge and GNNs. To ensure the accuracy of expert knowledge, DReKGNN does not rely on prompt templates in LLMs to generate knowledge descriptions for drugs and diseases. Instead, it extracts expert knowledge directly from the DrugBank and OMIM databases. The effective node embeddings with interpretable semantic information will be generated from expert knowledge descriptions involving biological mechanisms by LLMs. Then, we demonstrate that there is a need to mitigate noise when LLM node embeddings serving drug repositioning prediction tasks. Considering this design need, we integrate GNNs with LLM node embeddings by a mean aggregation strategy. The experiment results of performance comparison and case study show the effectiveness of DReKGNN in predicting drug-disease associations. The code is available at https://github.com/csubigdata-Organization/DReKGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
雪白凤完成签到,获得积分10
1秒前
winvi发布了新的文献求助10
1秒前
_蝴蝶小姐完成签到,获得积分10
2秒前
浅夏完成签到,获得积分10
2秒前
2秒前
skyangar发布了新的文献求助10
3秒前
伍次友发布了新的文献求助10
3秒前
upup婧发布了新的文献求助10
3秒前
叶伟帮发布了新的文献求助30
3秒前
珍惜一切给珍惜一切的求助进行了留言
3秒前
4秒前
种草完成签到,获得积分10
4秒前
酷酷依秋发布了新的文献求助10
4秒前
风归发布了新的文献求助10
5秒前
5秒前
CGQ发布了新的文献求助10
6秒前
Mzb830发布了新的文献求助10
6秒前
6秒前
书山有路勤为劲完成签到 ,获得积分10
8秒前
阳光的安南完成签到,获得积分10
8秒前
美好斓发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
林小雨完成签到,获得积分10
9秒前
SciGPT应助ccalvintan采纳,获得10
9秒前
9秒前
lebron发布了新的文献求助10
9秒前
宋晓静发布了新的文献求助10
9秒前
9秒前
风中冰香应助秀丽绿真采纳,获得10
10秒前
10秒前
suiyue完成签到,获得积分10
11秒前
11秒前
11秒前
元卓发布了新的文献求助10
11秒前
王不留行发布了新的文献求助10
12秒前
Hello应助bearinhoddies采纳,获得10
12秒前
12秒前
酷酷紫夏完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152