热电效应
声子
简并能级
塞贝克系数
凝聚态物理
化学
散射
格子(音乐)
热导率
热电材料
兴奋剂
拓扑(电路)
对称(几何)
声子散射
热的
电阻率和电导率
点(几何)
可扩展性
面子(社会学概念)
物理
作者
Meilin Yuan,Haoran Wei,Yuanhao Duan,XiaoLiang Xiao,Xianyong Ding,Xing’an Dong,Xun Liu,Rui Wang,Xiaozhi Wu,Xin Jin,Xiaolong Yang,Peng Yu,Meilin Yuan,Haoran Wei,Yuanhao Duan,XiaoLiang Xiao,Xianyong Ding,Xing’an Dong,Xun Liu,Rui Wang
标识
DOI:10.1021/acs.inorgchem.5c03819
摘要
Thermoelectric materials face scalability challenges due to the reliance on rare or toxic elements. Here, using first-principles calculations, we identify two magnesium-based semiconductors, MgSnP2 and MgSnAs2, as promising eco-friendly alternatives that exhibit intrinsically low lattice thermal conductivity (κL) and exceptionally high power factor (PF). Four-phonon calculations predict κL values of 10.8 (2.8) for MgSnP2 and 7.1 (2.1) for MgSnAs2 at 300 (800) K along the a-axis. Symmetry analysis identifies the presence of symmetry-protected nodal lines and a doubly degenerate Weyl point in the two compounds, inducing linearly crossing phonon branches that substantially enhance group velocities. However, the increased phonon scattering ultimately offsets the positive contribution to κL. Remarkably, p-type doping achieves PF values of 1.96 × 10-5 W K-2 cm-1 for MgSnP2 and 6.65 × 10-5 W K-2 cm-1 for MgSnAs2 at 800 K, yielding ZT values of 0.41 and 1.31. These findings highlight their potential as eco-friendly, high-performance alternatives and advance the design of Mg-based thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI