材料科学
膜
纳米孔
Nafion公司
石墨烯
钒
质子输运
质子交换膜燃料电池
堆积
纳米技术
制作
化学工程
流动电池
质子
电导
氧化还原
电导率
丝带
储能
薄膜
电极
单层
MXenes公司
离子运输机
多孔性
电解质
作者
Pavan Chaturvedi,Peifu Cheng,Saban M. Hus,Matthew Coupin,An-Ping Li,Jamie Warner,Michael S.h. Boutilier,Piran R. Kidambi
标识
DOI:10.1002/adma.202510609
摘要
Abstract Angstrom‐scale proton‐selective pores in atomically thin 2D materials present fundamentally new opportunities for advancing proton exchange membranes (PEMs). Vanadium Redox Flow Batteries (VRFBs) for grid‐scale energy storage require PEMs with high areal proton conductance (>1 S cm −2 ) and minimal vanadium ion (VO 2+ ) crossover. However, state‐of‐the‐art Nafion 212 membranes (N212 ≈50 µm thick), suffer from persistent VO 2+ crossover reducing performance and efficiency. Here, a layered PEM is demonstrated, comprising monolayer CVD graphene with Angstrom‐scale proton‐selective pores introduced via Ar plasma, integrated with an ultra‐thin ≈300 nm polybenzimidazole (PBI) layer and sandwiched between two Nafion 211 (25 µm thick) layers. The layered architecture facilitates scalable membrane fabrication by mitigating defects while processing and facile stacking of graphene layers allows stochastic non‐selective defect isolation enabling exceptionally low VO 2+ crossover (selectivity (H + areal conductance / VO 2+ permeability) ≈6709 × 10 6 S min cm −4 ), with proton conductance >8 S cm −2 . Systematic transport experiments supported by resistance‐based transport modelling elucidate the role of defect size, defect isolation, and sealing, as well as layering/stacking, to enable orders of magnitude (>671× over N212) improvements in selectivity, along with areal proton conductance >8 S cm −2 . This work highlights the potential of atomic‐scale proton‐selective defect engineering in 2D materials, in conjunction with facile stacking and layering of materials as strategies for scalable, high‐performance advances in PEMs for energy, electrochemical, and separation applications beyond VRFBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI