A Smartphone-Based Non-Destructive Multimodal Deep Learning Approach Using pH-Sensitive Pitaya Peel Films for Real-Time Fish Freshness Detection

计算机科学 食物腐败 人工智能 稳健性(进化) 模式识别(心理学) 环境科学 工艺工程 化学 工程类 生物 生物化学 遗传学 细菌 基因
作者
Yixuan Pan,Yujie Wang,Yuzhe Zhou,Jiacheng Zhou,Mengting Chen,Dongling Liu,Feier Li,Can Liu,Mao Zeng,Dongjing Jiang,Xiangyang Yuan,Hejun Wu
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 1805-1805
标识
DOI:10.3390/foods14101805
摘要

The detection of fish freshness is crucial for ensuring food safety. This study addresses the limitations of traditional detection methods, which rely on laboratory equipment and complex procedures, by proposing a smartphone-based detection method, termed FreshFusionNet, that utilizes a pitaya peel pH intelligent indicator film in conjunction with multimodal deep learning. The pitaya peel indicator film, prepared using high-pressure homogenization technology, demonstrates a significant color change from dark red to yellow in response to the volatile alkaline substances released during fish spoilage. To construct a multimodal dataset, 3600 images of the indicator film were captured using a smartphone under various conditions (natural light and indoor light) and from multiple angles (0° to 120°), while simultaneously recording pH values, total volatile basic nitrogen (TVB-N), and total viable count (TVC) data. Based on the lightweight MobileNetV2 network, a Multi-scale Dilated Fusion Attention module (MDFA) was designed to enhance the robustness of color feature extraction. A Temporal Convolutional Network (TCN) was then used to model dynamic patterns in chemical indicators across spoilage stages, combined with a Context-Aware Gated Fusion (CAG-Fusion) mechanism to adaptively integrate image and chemical temporal features. Experimental results indicate that the overall classification accuracy of FreshFusionNet reaches 99.61%, with a single inference time of only 142 ± 40 milliseconds (tested on Xiaomi 14). This method eliminates the need for professional equipment and enables real-time, non-destructive detection of fish spoilage through smartphones, providing consumers and the food supply chain with a low-cost, portable quality-monitoring tool, thereby promoting the intelligent and universal development of food safety detection technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zhu采纳,获得10
2秒前
lll完成签到,获得积分10
4秒前
繁多星发布了新的文献求助10
5秒前
8秒前
Dr大壮发布了新的文献求助10
13秒前
自然的霸发布了新的文献求助10
15秒前
19秒前
19秒前
22秒前
zhu发布了新的文献求助10
23秒前
刘佳发布了新的文献求助10
24秒前
Cee完成签到,获得积分10
25秒前
墨兮完成签到,获得积分10
26秒前
科研通AI5应助Alger采纳,获得10
27秒前
31秒前
33秒前
34秒前
35秒前
简单洋发布了新的文献求助20
37秒前
38秒前
伊伊发布了新的文献求助10
39秒前
Sun发布了新的文献求助30
39秒前
40秒前
唐泽雪穗应助科研通管家采纳,获得10
41秒前
moriaty应助科研通管家采纳,获得10
41秒前
隐形曼青应助科研通管家采纳,获得10
42秒前
大模型应助科研通管家采纳,获得10
42秒前
42秒前
orixero应助科研通管家采纳,获得10
42秒前
唐泽雪穗应助科研通管家采纳,获得10
42秒前
43秒前
43秒前
伊伊发布了新的文献求助10
44秒前
共享精神应助自然的霸采纳,获得10
47秒前
冷傲山彤发布了新的文献求助10
47秒前
48秒前
48秒前
倪塔宝贝发布了新的文献求助10
49秒前
小曹努力发布了新的文献求助10
49秒前
十三完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784598
求助须知:如何正确求助?哪些是违规求助? 4111817
关于积分的说明 12720816
捐赠科研通 3836514
什么是DOI,文献DOI怎么找? 2115376
邀请新用户注册赠送积分活动 1138374
关于科研通互助平台的介绍 1024374