生物
突变
氧化磷酸化
遗传学
线粒体
活性氧
氧化应激
线粒体DNA
终止密码子
现存分类群
适应(眼睛)
KEAP1型
细胞生物学
基因
生物化学
进化生物学
神经科学
转录因子
作者
Gianni M. Castiglione,Xin Chen,Zhenhua Xu,Nadir H Dbouk,A. A. Bose,David Carmona-Berrio,E. Emiliana,Lingli Zhou,Tatiana Boronina,Robert N. Cole,S.X. Wu,Abby Liu,T. Liu,Haining Lu,Ted Kalbfleisch,David C. Rinker,Antonis Rokas,Kyla F. Ortved,Elia J. Duh
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2025-03-27
卷期号:387 (6741)
标识
DOI:10.1126/science.adr8589
摘要
Horses are among nature’s greatest athletes, yet the ancestral molecular adaptations fueling their energy demands are poorly understood. Within a clinically important pathway regulating redox and metabolic homeostasis (NRF2/KEAP1), we discovered an ancient mutation—conserved in all extant equids—that increases mitochondrial respiration while decreasing tissue-damaging oxidative stress. This mutation is a de novo premature opal stop codon in KEAP1 that is translationally recoded into a cysteine through previously unknown mechanisms, producing an R15C mutation in KEAP1 that is more sensitive to electrophiles and reactive oxygen species. This recoding enables increased NRF2 activity, which enhances mitochondrial adenosine 5′-triphosphate production and cellular resistance to oxidative damage. Our study illustrates how recoding of a de novo stop codon, a strategy thought restricted to viruses, can facilitate adaptation in vertebrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI