A Novel Transfer Learning Approach for Skin Cancer Classification on ISIC 2024 3D Total Body Photographs

学习迁移 计算机科学 人工智能
作者
Javed Rashid,Salah Boulaaras,Muhammad Shoaib Saleem,Muhammad Faheem,M. Umair Shahzad
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (2)
标识
DOI:10.1002/ima.70065
摘要

ABSTRACT Skin cancer, and melanoma in particular, is a significant public health issue in the modern era because of the exponential death rate. Previous research has used 2D data to detect skin cancer, and the present methods, such as biopsies, are arduous. Therefore, we need new, more effective models and tools to tackle current problems quickly. The main objective of the work is to improve the 3D ResNet50 model for skin cancer classification by transfer learning. Trained on the ISIC 2024 3D Total Body Photographs (3D‐TBP), a Kaggle competition dataset, the model aims to detect five significant types of skin cancer: Melanoma (Mel), Melanocytic nevus (Nev), Basal cell carcinoma (BCC), Actinic keratosis (AK), and Benign keratosis (BK). While fine‐tuning achieves peak performance, data augmentation addresses the issue of overfitting. The proposed model outperforms state‐of‐the‐art methods with an overall accuracy of 93.88%. Since the accuracy drops to 85.67% while utilizing 2D data, the substantial contribution becomes apparent when working with 3D data. The model articulates excellent memory and precision with remarkable accuracy. According to the findings, the 3D ResNet50 model improves the diagnostic process and may be rated better than conventional approaches as a noninvasive, accurate, and efficient substitute. The current model is valuable because it can help with a significant clinical application: the early diagnosis of melanoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aloong完成签到,获得积分10
刚刚
山猪吃细糠完成签到 ,获得积分10
刚刚
1秒前
huilihub完成签到,获得积分10
1秒前
1秒前
科研小白白完成签到,获得积分10
1秒前
2秒前
文龙完成签到 ,获得积分10
2秒前
bhkwxdxy完成签到,获得积分10
2秒前
xiaobao完成签到,获得积分10
3秒前
成功完成签到 ,获得积分10
3秒前
Lori完成签到,获得积分10
4秒前
4秒前
zanzan完成签到,获得积分10
4秒前
lavender完成签到,获得积分20
4秒前
小Q啊啾完成签到,获得积分10
5秒前
阿瓦隆的蓝胖子完成签到,获得积分10
6秒前
6秒前
任婷完成签到,获得积分10
7秒前
aloong发布了新的文献求助10
7秒前
汉堡包应助linkr5采纳,获得10
7秒前
Auston_zhong应助下课了吧采纳,获得10
7秒前
7秒前
111完成签到,获得积分20
8秒前
重要的小夏完成签到,获得积分10
8秒前
零度寂寞3166完成签到,获得积分10
9秒前
杨冰发布了新的文献求助10
9秒前
怡然雨雪完成签到,获得积分10
9秒前
小心科研完成签到,获得积分10
9秒前
失眠的汽车完成签到,获得积分10
9秒前
素的素的完成签到,获得积分10
10秒前
10秒前
细腻的天蓝完成签到 ,获得积分10
11秒前
小明完成签到,获得积分10
11秒前
LL完成签到,获得积分10
12秒前
12秒前
zht完成签到,获得积分10
13秒前
绵马紫萁完成签到,获得积分10
14秒前
南风发布了新的文献求助10
14秒前
路人甲完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609