纳米团簇
光催化
双金属片
Boosting(机器学习)
材料科学
芘
还原(数学)
共价键
金属有机骨架
纳米技术
化学工程
光化学
化学
催化作用
计算机科学
吸附
冶金
有机化学
金属
工程类
人工智能
几何学
数学
作者
Yu‐Ling Lin,Xiaofang Lai,G. Steve Huang,Jianhui Luo,Qiaoshan Chen,Guocheng Huang,Jinhong Bi
标识
DOI:10.1002/chem.202500766
摘要
Photocatalytic CO2 reduction offers a promising strategy to mitigate the greenhouse effect, yet it remains a challenging process due to the high energy barrier associated with the high stability of CO2. In this study, we synthesized Py‐bTDC, a pyrene‐based covalent organic framework (COF) enriched with nitrogen and sulfur atoms, and anchored palladium nanoclusters (Pd NCs) onto its structure to enhance CO2 reduction efficiency. The confined Pd NCs amplify the built‐in electric field (IEF), enabling efficient photogenerated carrier migration and suppressing electron‐hole recombination. Simultaneously, Pd NCs serve as catalytic active sites, optimizing CO2 adsorption and activation. Density functional theory (DFT) calculations reveal that Pd reduces the energy barrier for forming the critical intermediate (*COOH), thereby accelerating CO production. Under visible‐light irradiation in a gas‐solid system using water as a proton donor, the Pd3/Py‐bTDC composite achieved a CO evolution rate of 17.75 μmol·h‐1·g‐1 with 86.0% selectivity. This study advances the design of COF‐based photocatalysts by synergistically modulating IEF and the engineering active sites for efficient CO2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI