Effectiveness of Large Language Models in Stroke Rehabilitation Health Education: A Comparative Study of ChatGPT-4, MedGo, Qwen, and ERNIE Bot (Preprint)

预印本 康复 冲程(发动机) 医学教育 心理学 物理医学与康复 医学 计算机科学 物理疗法 万维网 工程类 机械工程
作者
Shiqi Qiang,Haitao Zhang,Yang Liao,Yue Zhang,Yanfen Gu,Yiyan Wang,Zhigang Xu,Hui Shi,N. Han,Haiping Yu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/73226
摘要

Stroke is a leading cause of disability and death worldwide, with home-based rehabilitation playing a crucial role in improving patient prognosis and quality of life. Traditional health education often lacks precision, personalization, and accessibility. In contrast, large language models (LLMs) are gaining attention for their potential in medical health education, owing to their advanced natural language processing capabilities. However, the effectiveness of LLMs in home-based stroke rehabilitation remains uncertain. This study evaluates the effectiveness of 4 LLMs-ChatGPT-4, MedGo, Qwen, and ERNIE Bot-selected for their diversity in model type, clinical relevance, and accessibility at the time of study design in home-based stroke rehabilitation. The aim is to offer patients with stroke more precise and secure health education pathways while exploring the feasibility of using LLMs to guide health education. In the first phase of this study, a literature review and expert interviews identified 15 common questions and 2 clinical cases relevant to patients with stroke in home-based rehabilitation. These were input into 4 LLMs for simulated consultations. Six medical experts (2 clinicians, 2 nursing specialists, and 2 rehabilitation therapists) evaluated the LLM-generated responses using a Likert 5-point scale, assessing accuracy, completeness, readability, safety, and humanity. In the second phase, the top 2 performing models from phase 1 were selected. Thirty patients with stroke undergoing home-based rehabilitation were recruited. Each patient asked both models 3 questions, rated the responses using a satisfaction scale, and assessed readability, text length, and recommended reading age using a Chinese readability analysis tool. Data were analyzed using one-way ANOVA, post hoc Tukey Honestly Significant Difference tests, and paired t tests. The results revealed significant differences across the 4 models in 5 dimensions: accuracy (P=.002), completeness (P<.001), readability (P=.04), safety (P=.007), and humanity (P<.001). ChatGPT-4 outperformed all models in each dimension, with scores for accuracy (mean 4.28, SD 0.84), completeness (mean 4.35, SD 0.75), readability (mean 4.28, SD 0.85), safety (mean 4.38, SD0.81), and user-friendliness (mean 4.65, SD 0.66). MedGo excelled in accuracy (mean 4.06, SD 0.78) and completeness (mean 4.06, SD 0.74). Qwen and ERNIE Bot scored significantly lower across all 5 dimensions than ChatGPT-4 and MedGo. ChatGPT-4 generated the longest responses (mean 1338.35, SD 236.03) and had the highest readability score (mean 12.88). In the second phase, ChatGPT-4 performed the best overall, while MedGo provided the clearest responses. LLMs, particularly ChatGPT-4 and MedGo, demonstrated promising performance in home-based stroke rehabilitation education. However, discrepancies between expert and patient evaluations highlight the need for improved alignment with patient comprehension and expectations. Enhancing clinical accuracy, readability, and oversight mechanisms will be essential for future real-world integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
jiayou完成签到,获得积分10
4秒前
小小发布了新的文献求助10
4秒前
Xin完成签到,获得积分10
5秒前
Badada完成签到,获得积分10
8秒前
单核处理器完成签到,获得积分10
8秒前
8秒前
李泽完成签到,获得积分10
9秒前
10秒前
飘逸灵煌发布了新的文献求助10
12秒前
13秒前
安静完成签到,获得积分20
13秒前
13秒前
16秒前
精神世界发布了新的文献求助10
16秒前
16秒前
在水一方应助安静采纳,获得10
16秒前
Zoom应助微笑的手机采纳,获得50
17秒前
何以故人初完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
zyf完成签到,获得积分10
20秒前
CXS发布了新的文献求助10
20秒前
郎谋完成签到,获得积分10
21秒前
changping应助xryhhh采纳,获得20
21秒前
21秒前
上官若男应助小鱼骑单车采纳,获得10
22秒前
术语发布了新的文献求助10
23秒前
lucky发布了新的文献求助10
24秒前
25秒前
lin完成签到 ,获得积分10
25秒前
饱满南松发布了新的文献求助10
27秒前
插线板完成签到 ,获得积分10
28秒前
魔王小豆包完成签到,获得积分10
29秒前
30秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979781
求助须知:如何正确求助?哪些是违规求助? 4232352
关于积分的说明 13183500
捐赠科研通 4023544
什么是DOI,文献DOI怎么找? 2201361
邀请新用户注册赠送积分活动 1213812
关于科研通互助平台的介绍 1130052