Sequence and taxonomic feature evaluation facilitated the discovery of alcohol oxidases

特征(语言学) 序列(生物学) 计算生物学 计算机科学 生物 遗传学 哲学 语言学
作者
Yilei Han,Xu‐Wei Ding,Jianping Tan,Yajuan Sun,Yunjiang Duan,Zheng Liu,Gao‐Wei Zheng,Diannan Lu
出处
期刊:Synthetic and Systems Biotechnology [Elsevier]
卷期号:10 (3): 907-915
标识
DOI:10.1016/j.synbio.2025.04.014
摘要

Recent advancements in data technology offer immense opportunities for the discovery and development of new enzymes for the green synthesis of chemicals. Current protein databases predominantly prioritize overall sequence matches. The multi-scale features underpinning catalytic mechanisms and processes, which are scattered across various data sources, have not been sufficiently integrated to be effectively utilized in enzyme mining. In this study, we developed a sequence- and taxonomic-feature evaluation driven workflow to discover enzymes that can be expressed in E. coli and catalyze chemical reactions in vitro, using alcohol oxidase (AOX) for demonstration, which catalyzes the conversion of methanol to formaldehyde. A dataset of 21 reported AOXs was used to construct sequence scoring rules based on features, including sequence length, structural motifs, catalytic-related residues, binding residues, and overall structure. These scoring rules were applied to filter the results from HMM-based searches, yielding 357 candidate sequences of eukaryotic origin, which were categorized into six classes at 85 % sequence similarity. Experimental validation was conducted in two rounds on 31 selected sequences representing all classes. Among these selected sequences, 19 were expressed as soluble proteins in E. coli, and 18 of these soluble proteins exhibited AOX activity, as predicted. Notably, the most active recombinant AOX exhibited an activity of 8.65 ± 0.29 U/mg, approaching the highest activity of native eukaryotic enzymes. Compared to the established UniProt-annotation-based workflow, this feature-evaluation-based approach yielded a higher probability of highly active recombinant AOX (from 8.3 % to 19.4 %), demonstrating the efficiency and potential of this multi-dimensional feature evaluation method in accelerating the discovery of active enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
刚刚
英吉利25发布了新的文献求助20
1秒前
4000k发布了新的文献求助10
1秒前
1秒前
Grace发布了新的文献求助10
2秒前
从容诗云发布了新的文献求助10
3秒前
严yee发布了新的文献求助10
3秒前
清风明月完成签到 ,获得积分10
3秒前
3秒前
ikun666发布了新的文献求助10
3秒前
美好斓发布了新的文献求助10
3秒前
4秒前
Lucas应助蓝天采纳,获得10
4秒前
科研小白完成签到,获得积分10
5秒前
发嗲的戎完成签到 ,获得积分10
6秒前
6秒前
Lim1819完成签到 ,获得积分10
7秒前
7秒前
研友_841rlL发布了新的文献求助30
8秒前
8秒前
大瓶子发布了新的文献求助10
9秒前
AUV发布了新的文献求助10
9秒前
赘婿应助jiayelong采纳,获得10
9秒前
铛铛铛发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
活泼巧曼完成签到,获得积分10
12秒前
13秒前
褚乘风完成签到,获得积分10
14秒前
美好斓发布了新的文献求助10
15秒前
15秒前
15秒前
大模型应助从容甜瓜采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
qingqing完成签到,获得积分10
18秒前
严天浩完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764