Identifying Bottlenecks in the Photocatalytic Oxygen Evolution Reaction with Covalent Organic Frameworks

光催化 共价键 析氧 氧气 光化学 材料科学 化学 纳米技术 化学工程 催化作用 有机化学 工程类 电化学 电极 物理化学
作者
Stefan Trenker,Hugo A. Vignolo‐González,Andrés Rodríguez‐Camargo,Liang Yao,Martijn A. Zwijnenburg,Bettina V. Lotsch
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:37 (12): 4463-4474 被引量:1
标识
DOI:10.1021/acs.chemmater.5c00804
摘要

Covalent organic frameworks (COFs) have emerged as promising semiconducting materials for photocatalytic applications due to their large surface area, high crystallinity, and vast synthetic tunability. This is especially noticeable in the context of photocatalytic water splitting, where many COFs have been employed for the hydrogen evolution half-reaction. There, sacrificial reagents typically replace the kinetically demanding oxygen evolution half-reaction. On the contrary, only few reports focus on (sacrificial) water oxidation with COF photocatalysts. In most of these cases, cobalt species are employed as oxygen evolution cocatalyst, often with limited insight into their structure and detailed role in the catalysis. Herein, we use heterogenization of a molecularly defined iridium half-sandwich complex onto a bipyridine-based COF (Ir@TAPB-BPY COF) and provide detailed structural insights ensuring the integrity of the targeted cocatalyst. First, we demonstrate the retained catalytic activity of the anchored Cp*Ir-(III) motifs in chemical water oxidation experiments. In contrast, subsequent photocatalytic and electrocatalytic tests indicate that Ir@TAPB-BPY COF does not evolve oxygen and that careful control experiments have to be conducted in order to avoid false positive results, caused for example by the sacrificial electron acceptor. Using computational methods, we trace back the missing performance to thermodynamic and kinetic limitations of the employed systems. This work demonstrates the pitfalls associated with low-performing oxygen evolution photocatalysts as well as the indispensability of control experiments and their careful evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyu完成签到 ,获得积分10
刚刚
7364发布了新的文献求助10
刚刚
1秒前
gyhh发布了新的文献求助10
2秒前
3秒前
科研xiao白发布了新的文献求助20
4秒前
危机的安容完成签到,获得积分10
6秒前
打打应助seven采纳,获得10
6秒前
6秒前
科研通AI5应助大气的大米采纳,获得10
7秒前
7秒前
xkuz完成签到,获得积分10
7秒前
橙子发布了新的文献求助10
8秒前
Lucas应助每天都快乐采纳,获得10
8秒前
9秒前
Rossie完成签到,获得积分10
10秒前
aaaa完成签到,获得积分20
10秒前
大古完成签到,获得积分20
12秒前
他也蓝发布了新的文献求助10
12秒前
岩崖完成签到,获得积分10
12秒前
阿成完成签到,获得积分10
12秒前
JamesPei应助满天星采纳,获得10
12秒前
七月流火应助zz0429采纳,获得50
12秒前
13秒前
dada完成签到,获得积分10
13秒前
18秒前
大个应助aaaa采纳,获得10
18秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
赘婿应助白云垛采纳,获得20
22秒前
万能图书馆应助祺玄采纳,获得10
22秒前
他也蓝完成签到,获得积分10
23秒前
24秒前
25秒前
深情安青应助PINk采纳,获得10
25秒前
默默的阑悦完成签到,获得积分10
25秒前
在水一方应助流光采纳,获得10
26秒前
满天星发布了新的文献求助10
26秒前
科研通AI2S应助乃惜采纳,获得10
27秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4214913
求助须知:如何正确求助?哪些是违规求助? 3749241
关于积分的说明 11793944
捐赠科研通 3415431
什么是DOI,文献DOI怎么找? 1874328
邀请新用户注册赠送积分活动 928518
科研通“疑难数据库(出版商)”最低求助积分说明 837637