Modeling, prediction, and optimization of pump system efficiency: A comparative study of machine learning methods and response surface method

响应面法 计算机科学 机器学习 人工智能
作者
Nuri Orhan,Ender Kaya
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy [SAGE Publishing]
被引量:2
标识
DOI:10.1177/09576509251330935
摘要

This study explores the interrelationship between pump performance, system efficiency, and noise/vibration levels by analyzing the influence of pump frequency and outlet pressure. System efficiency predictions were conducted utilizing both the Response Surface Method (RSM) and advanced machine learning algorithms, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and XGBoost. The comparative analysis revealed that ANN provided the highest prediction accuracy with an R 2 value of 0.946, Root Mean Square Error (RMSE) of 1.2% and Mean Absolute Percentage Error (MAPE) of 2.32%. However, when predicting system efficiency using external data inputs, RSM outperformed other models, achieving an R 2 value of 0.96 and a mean error rate of 3.84%. Optimization via RSM was performed for target flow rates of 35, 40, and 45 m 3 h −1 , with the optimal flow rate determined at 35 m 3 h −1 , corresponding to a system efficiency of 42%. To validate these optimization results, experimental tests were conducted, revealing a flow rate of 35.4 m 3 h −1 and system efficiency of 42.95%, with error margins of 1.12% and 2.21%, respectively. The study demonstrates that RSM is a robust and effective tool for optimizing pump system performance, offering practical applications in improving energy efficiency and operational stability in pumping facilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JQing完成签到,获得积分10
1秒前
1秒前
zzh完成签到 ,获得积分10
2秒前
2秒前
wlj完成签到 ,获得积分10
3秒前
3秒前
3秒前
yuyu完成签到,获得积分10
3秒前
yahonyoyoyo发布了新的文献求助10
3秒前
dxftx完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
ml完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
周六八应助科研通管家采纳,获得10
5秒前
柳香夏荷应助科研通管家采纳,获得50
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助胖鲤鱼采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968957
求助须知:如何正确求助?哪些是违规求助? 4226164
关于积分的说明 13162161
捐赠科研通 4013411
什么是DOI,文献DOI怎么找? 2196043
邀请新用户注册赠送积分活动 1209436
关于科研通互助平台的介绍 1123478