An Intelligent Intrusion Detection System in IoV Using Machine Learning and Deep Learning Models

计算机科学 入侵检测系统 人工智能 深度学习 机器学习
作者
Deepthi Reddy Dasari,G. Hima Bindu
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:38 (10)
标识
DOI:10.1002/dac.70131
摘要

ABSTRACT Creating an internet of vehicles (IoV) intelligent intrusion detection system (IDS) that can identify and stop a wide range of new and evolving cyberattacks is a challenging task. IoV generates vast amounts of data from sensors and communication protocols, necessitating an IDS capable of handling various data formats and extracting useful information. Real‐time attack identification and mitigation require efficient model inference with minimal latency. Cyberattackers employ sophisticated techniques, necessitating an IDS capable of learning and adapting to new threats. By oversampling the minority class with SMOTE, SMOTEBoost increases the training data available for learning its features, leading to better detection of minority class instances. The boosting component focuses on training weak learners on misclassified instances, further improving specificity toward the minority class and reducing false positives. The paper describes a way to choose important features for finding intrusions in the IoV that includes nonnegative latent factor dimensionality‐minimizing intraclass compactness (NLF‐DMIC). For classification, this paper proposes a four‐model decision tree (DT), a random forest (RF), an enhanced LSTM network with a conventional long‐short‐term memory. Tested on the CICIDS‐2018 and Car‐Hacking datasets, the suggested approach showed the best intrusion detection performance. The ILSTM outperformed various ML and DL approaches, achieving 98.68% accuracy with SMOTEBOOST on the CICIDS2018 dataset and 98.87% accuracy with SMOTEBOOST on the Car‐Hacking dataset. An intelligent IDS for IoV using machine learning (ML) and deep learning (DL) models enhances recognition accuracy, reduces false alarms, and adapts to dynamic threats, ensuring robust, real‐time security for connected vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好芳完成签到 ,获得积分10
刚刚
科研通AI5应助zuozuo采纳,获得10
刚刚
上官若男应助Debra采纳,获得10
1秒前
linkman应助心灵美的元枫采纳,获得30
1秒前
invader发布了新的文献求助10
2秒前
hxh完成签到 ,获得积分10
3秒前
Owen应助星雨采纳,获得30
5秒前
LUO完成签到,获得积分20
6秒前
缓慢听枫完成签到,获得积分10
9秒前
10秒前
Singularity应助山大能元字采纳,获得10
11秒前
今后应助OrthoDW采纳,获得10
13秒前
13秒前
15秒前
Aimee完成签到,获得积分10
15秒前
乐乐应助正直指甲油采纳,获得10
15秒前
huaming发布了新的文献求助10
15秒前
汤圆呢醒醒完成签到,获得积分10
17秒前
健忘蘑菇完成签到,获得积分10
18秒前
19秒前
19秒前
fann发布了新的文献求助10
20秒前
20秒前
21秒前
李佳雪完成签到 ,获得积分10
22秒前
22秒前
23秒前
linkman应助燕子采纳,获得50
24秒前
开朗亦绿完成签到,获得积分10
24秒前
明亮依琴发布了新的文献求助30
24秒前
姜姜研完成签到 ,获得积分10
24秒前
24秒前
LYDZ2发布了新的文献求助10
25秒前
fann完成签到,获得积分10
25秒前
26秒前
大模型应助香蕉梨愁采纳,获得10
28秒前
科研通AI5应助lalla采纳,获得10
28秒前
28秒前
28秒前
lzyfwz666完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450160
求助须知:如何正确求助?哪些是违规求助? 3918272
关于积分的说明 12161675
捐赠科研通 3568055
什么是DOI,文献DOI怎么找? 1959324
邀请新用户注册赠送积分活动 998745
科研通“疑难数据库(出版商)”最低求助积分说明 893846