亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-denoimer: efficient contextual transformer network for low-dose CT denoising

计算机科学 降噪 变压器 人工智能 图像质量 计算机断层摄影术 模式识别(心理学) 图像(数学) 量子力学 医学 物理 放射科 电压
作者
Yuanke Zhang,Fan Xu,Rui Zhang,Yanfei Guo,Hanxiang Wang,Bingbing Wei,Fei Ma,Jing Meng,Jianlei Liu,Hongbing Lu,Yang Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/addea6
摘要

Abstract Objective. Low-dose computed tomography (LDCT) effectively reduces radiation exposure to patients, but introduces severe noise artifacts that affect diagnostic accuracy. Recently, Transformer-based network architectures have been widely applied to LDCT image denoising, generally achieving superior results compared to traditional convolutional methods. However, these methods are often hindered by high computational costs and struggles in capturing complex local contextual features, which negatively impact denoising performance. Approach. In this work, we propose CT-Denoimer, an efficient CT Denoising Transformer network that captures both global correlations and intricate, spatially varying local contextual details in CT images, enabling the generation of high-quality images. The core of our framework is a Transformer module that consists of two key components: the Multi-Dconv head Transposed Attention (MDTA) and the Mixed Contextual Feed-forward Network (MCFN). The MDTA block captures global correlations in the image with linear computational complexity, while the MCFN block manages multi-scale local contextual information, both static and dynamic, through a series of Enhanced Contextual Transformer (eCoT) modules. In addition, we incorporate Operation-Wise Attention Layers (OWALs) to enable collaborative refinement in the proposed CT-Denoimer, enhancing its ability to more effectively handle complex and varying noise patterns in LDCT images. Main results. Extensive experimental validation on both the AAPM-Mayo public dataset and a real-world clinical dataset demonstrated the state-of-the-art performance of the proposed CT-Denoimer. It achieved a peak signal-to-noise ratio (PSNR) of 33.681 dB, a structural similarity index measure (SSIM) of 0.921, an information fidelity criterion (IFC) of 2.857 and a visual information fidelity (VIF) of 0.349. Subjective assessment by radiologists gave an average score of 4.39, confirming its clinical applicability and clear advantages over existing methods. Significance. This study presents an innovative CT denoising Transformer network that sets a new benchmark in LDCT image denoising, excelling in both noise reduction and fine structure preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后晓兰完成签到 ,获得积分10
54秒前
xingsixs完成签到 ,获得积分10
1分钟前
Cassie发布了新的文献求助10
1分钟前
neversay4ever完成签到 ,获得积分10
2分钟前
科研通AI5应助秋日思语采纳,获得10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得30
3分钟前
wang发布了新的文献求助10
3分钟前
3分钟前
3分钟前
秋日思语发布了新的文献求助10
3分钟前
3分钟前
andrele完成签到,获得积分10
3分钟前
hqh发布了新的文献求助10
3分钟前
枫威完成签到 ,获得积分10
3分钟前
andrele发布了新的文献求助30
3分钟前
4分钟前
4分钟前
Waymaker发布了新的文献求助10
4分钟前
gincle完成签到 ,获得积分10
4分钟前
Waymaker完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
RR完成签到 ,获得积分10
6分钟前
6分钟前
Auralis完成签到 ,获得积分10
6分钟前
儒雅海秋完成签到,获得积分10
7分钟前
852应助科研通管家采纳,获得10
7分钟前
小榕树完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
Orange应助cometx采纳,获得10
8分钟前
zcxxxxxxx完成签到,获得积分10
8分钟前
8分钟前
GGGrigor完成签到,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173891
求助须知:如何正确求助?哪些是违规求助? 4363528
关于积分的说明 13585633
捐赠科研通 4212140
什么是DOI,文献DOI怎么找? 2310229
邀请新用户注册赠送积分活动 1309314
关于科研通互助平台的介绍 1256721