Clinical and Genetic Factors Associated with Neuroendocrine Neoplasms - a UK Biobank Study

生命银行 医学 内科学 肿瘤科 人口 肺癌 体质指数 生物信息学 生物 环境卫生
作者
Harry Green,Marie Line El-Asmar,Brian Rous,Gareth Hawkes,María Trinidad Moreno-Montilla,Christina Thirlwell,John Ramage
出处
期刊:Neuroendocrinology [Karger Publishers]
卷期号:: 1-10
标识
DOI:10.1159/000545114
摘要

Background Incidence of neuroendocrine neoplasms (NEN) is rising globally, yet clinical and genetic factors remain poorly understood. Evidence for the role of obesity is conflicted and studies on prospectively collected data is sparse. We aimed to identify clinical and germline genetic risk factors associated with NEN in the UK Biobank. Methods Cases of NEN were identified in the UK Biobank’s cancer registry data (N~500,000). Using a combination of ICD-O3 codes for cancer site and histology, NEN cases were stratified into neuroendocrine tumour (NET), neuroendocrine carcinoma (NEC) and small / large cell lung cancer (SLCLC). A Cox-proportional hazards model was used to test for an association between clinical phenotypes and increased NEN risk, and a gene burden test in Regenie was used to test for causal variants in the exome sequencing data. Results We identified 704 NET, 340 NEC, and 550 SLCLC cases. Obesity (body mass index or waist-hip-ratio) and lower cholesterol (LDL, HDL or total) had a significantly significant association with NEN risk, however the effect size was marginal. Smoking and HbA1c associated only with SLCLC. Air pollution was not significantly associated when adjustment was made for socio-economic status. We replicated a known germline association between loss of function variants in MEN-1 and NEC, but did not detect any novel association in exome variants. Discussion This is the first large prospective population-based study to identify potential clinical and genetic risk factors for NEN and defined a novel phenotype in the UK Biobank. More research is needed to establish whether these relationships are causal. The exome study was underpowered, and future work in this area should focus on meta-analysing multiple large datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白兔发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
李爱国应助001采纳,获得10
3秒前
弓長玉王令完成签到,获得积分10
3秒前
3秒前
Sun1c7发布了新的文献求助10
4秒前
5秒前
乐乐应助qsh采纳,获得10
5秒前
5秒前
5秒前
斯文败类应助筱奇采纳,获得30
5秒前
ahai完成签到 ,获得积分10
5秒前
枫星发布了新的文献求助10
5秒前
6秒前
liuliu发布了新的文献求助10
6秒前
LaZyMore发布了新的文献求助10
6秒前
8秒前
Vino发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
小怪兽完成签到,获得积分10
10秒前
10秒前
倾城发布了新的文献求助10
11秒前
11秒前
安排123发布了新的文献求助10
13秒前
沉静亿先完成签到 ,获得积分10
16秒前
ffnvv发布了新的文献求助10
17秒前
会出水的海绵宝宝完成签到,获得积分10
18秒前
20秒前
20秒前
坦率的匪应助jon158采纳,获得10
22秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
决明子完成签到 ,获得积分10
27秒前
30秒前
lvyan发布了新的文献求助10
30秒前
zrrr完成签到 ,获得积分10
30秒前
鳎mu发布了新的文献求助10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4206800
求助须知:如何正确求助?哪些是违规求助? 3741228
关于积分的说明 11776724
捐赠科研通 3411528
什么是DOI,文献DOI怎么找? 1872033
邀请新用户注册赠送积分活动 927007
科研通“疑难数据库(出版商)”最低求助积分说明 836896