Efficient Metabolomics Profiling from Plasma Extracellular Vesicles Enables Accurate Diagnosis of Early Gastric Cancer

化学 细胞外小泡 液体活检 代谢组学 癌症 疾病 病理 色谱法 医学 内科学 细胞生物学 生物
作者
Fanqin Bu,Xinyi Shen,Hao‐Su Zhan,Duanda Wang,Li Min,Yongyang Song,Shutao Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (10): 8672-8686 被引量:1
标识
DOI:10.1021/jacs.4c18110
摘要

Accurate diagnosis of early gastric cancer is valuable for asymptomatic populations, while current endoscopic examination combined with pathological tissue biopsy often encounters bottlenecks for early-stage cancer and causes pain to patients. Liquid biopsy shows promise for noninvasive diagnosis of early gastric cancer; however, it remains a challenge to achieve accurate diagnosis due to the lack of highly sensitive and specific biomarkers. Herein, we propose a protocol combining metabolomics profiling from plasma extracellular vesicles (EVs) and machine learning to identify the metabolomics discrepancies of early gastric cancer individuals from other populations. Efficient metabolomics profiling is achieved by efficient, high-purity, and damage-free plasma EVs separation using elaborately designed nanotrap-structured microparticles (NanoFisher) by taking advantage of stereoscopic interaction and affinity interaction. Significant metabolomics discrepancies are obtained from 150 early gastric cancer (50), benign gastric disease (50), and non-disease control (50) plasma samples. Machine learning enables ideal distinction between early gastric cancer and non-disease control samples with an area under the curve (AUC) of 1.000, achieves an AUC of 0.875–0.975 for differentiating early gastric cancer from benign gastric diseases, and demonstrates an overall accuracy of 92% in directly classifying these three categories. The plasma EV metabolomics profiling enabled by NanoFisher materials, integrated with machine learning, holds considerable promise for broad clinical acceptance, enhancing gastric cancer screening outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
谷晋羽完成签到,获得积分10
3秒前
4秒前
ray发布了新的文献求助10
5秒前
一叶知秋应助等待的凝芙采纳,获得10
6秒前
aaaaarfv发布了新的文献求助10
7秒前
along发布了新的文献求助10
7秒前
阿辉完成签到 ,获得积分10
7秒前
wanci应助森林木采纳,获得10
7秒前
郝玖不见完成签到,获得积分10
8秒前
科目三应助111采纳,获得10
8秒前
禾风发布了新的文献求助10
9秒前
呢喃完成签到,获得积分10
9秒前
稳重水卉完成签到,获得积分10
10秒前
10秒前
所所应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得30
12秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
不安青牛应助失眠的安白采纳,获得10
13秒前
13秒前
Gsyin完成签到,获得积分20
16秒前
deng完成签到 ,获得积分10
16秒前
17秒前
17秒前
yucj发布了新的文献求助10
17秒前
MM11111发布了新的文献求助10
19秒前
19秒前
施以歌完成签到,获得积分10
20秒前
20秒前
马霄鑫发布了新的文献求助10
21秒前
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103870
求助须知:如何正确求助?哪些是违规求助? 3641772
关于积分的说明 11539573
捐赠科研通 3350073
什么是DOI,文献DOI怎么找? 1840720
邀请新用户注册赠送积分活动 907680
科研通“疑难数据库(出版商)”最低求助积分说明 824813