Rapid Authentication of Plant-Based Milk Alternatives by Coupling Portable Raman Spectroscopy with Machine Learning

拉曼光谱 人工智能 过度拟合 支持向量机 机器学习 随机森林 计算机科学 样品(材料) 模式识别(心理学) 分析化学(期刊) 材料科学 化学 色谱法 物理 光学 人工神经网络
作者
Hoang Le,Tianqi Li,Jimena G Villareal,Jie Gao,Yaxi Hu
出处
期刊:Journal of AOAC International [Oxford University Press]
标识
DOI:10.1093/jaoacint/qsaf022
摘要

Abstract Background Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin. Objective In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning. Methods Unprocessed PBMA (i.e., blended raw nut/grain) and processed PBMA that mimic the industrial processing procedures (i.e., filtration and pasteurization) were prepared in lab and subjected to Raman spectral collection without any sample preparation. Three machine learning algorithms [i.e., k-nearest neighbor (KNN), support vector machine (SVM) and random forest (RF)] were tested and compared. Results RF achieved the best performance in recognizing the plant sources for the unprocessed PBMA, with accuracies of 96.88% and 95.83% in the cross-validation and test set prediction, respectively. Due to small sample size and risk of overfitting, classification models for the biological origin of processed PBMA were constructed by combining Raman spectra of the unprocessed and processed samples. Again, RF models achieved the highest accuracy in identifying the species, i.e., 94.27% in cross-validation and 94.44% in prediction. Conclusions These results indicated that the portable Raman spectrometer captured the chemical fingerprints that can effectively identify the plant species of different PBMA. Using this non-destructive Raman spectroscopic based method, the overall analysis from sample to answer was completed within 5 min, providing inspection laboratories a rapid and reliable screening tool to ensure the authenticity of the biological origin of PBMA. Highlights This study presents a novel method for rapid and non-destructive identification of the plant sources of PBMA (both unprocessed and processed) based on the Raman spectroscopic technique and machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
冻冻也完成签到,获得积分10
1秒前
SciGPT应助绺妙采纳,获得10
1秒前
危险源完成签到,获得积分10
1秒前
科研_小白完成签到,获得积分10
1秒前
zxy完成签到,获得积分10
1秒前
等待的盼波完成签到,获得积分10
1秒前
积极问晴完成签到,获得积分10
2秒前
2秒前
2秒前
peaceone完成签到,获得积分10
3秒前
草莓味的榴莲完成签到,获得积分10
3秒前
邬不污完成签到,获得积分10
3秒前
易安完成签到,获得积分20
3秒前
zwd完成签到 ,获得积分10
4秒前
916应助自然的诗翠采纳,获得10
4秒前
小城发布了新的文献求助10
4秒前
Kuga应助元谷雪采纳,获得10
5秒前
HRB驳回了Owen应助
5秒前
mama完成签到,获得积分10
6秒前
黑森林完成签到,获得积分10
6秒前
天天快乐应助大音响贴贴采纳,获得10
6秒前
6秒前
123完成签到,获得积分10
7秒前
yyyy发布了新的文献求助10
7秒前
7秒前
派大星完成签到,获得积分10
7秒前
易安发布了新的文献求助10
8秒前
WWY完成签到,获得积分10
8秒前
lzz发布了新的文献求助10
8秒前
xuxu完成签到,获得积分10
8秒前
Eton完成签到,获得积分10
8秒前
9秒前
9秒前
zs_123完成签到,获得积分10
9秒前
qiao完成签到,获得积分10
10秒前
绺妙完成签到,获得积分20
10秒前
10秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907170
求助须知:如何正确求助?哪些是违规求助? 3452704
关于积分的说明 10872017
捐赠科研通 3178503
什么是DOI,文献DOI怎么找? 1755926
邀请新用户注册赠送积分活动 849242
科研通“疑难数据库(出版商)”最低求助积分说明 791387