Rapid Authentication of Plant-Based Milk Alternatives by Coupling Portable Raman Spectroscopy with Machine Learning

拉曼光谱 人工智能 过度拟合 支持向量机 机器学习 随机森林 计算机科学 样品(材料) 模式识别(心理学) 分析化学(期刊) 材料科学 化学 色谱法 物理 光学 人工神经网络
作者
Hoang Le,Tianqi Li,Jimena G Villareal,Jie Gao,Yaxi Hu
出处
期刊:Journal of AOAC International [Oxford University Press]
标识
DOI:10.1093/jaoacint/qsaf022
摘要

Abstract Background Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin. Objective In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning. Methods Unprocessed PBMA (i.e., blended raw nut/grain) and processed PBMA that mimic the industrial processing procedures (i.e., filtration and pasteurization) were prepared in lab and subjected to Raman spectral collection without any sample preparation. Three machine learning algorithms [i.e., k-nearest neighbor (KNN), support vector machine (SVM) and random forest (RF)] were tested and compared. Results RF achieved the best performance in recognizing the plant sources for the unprocessed PBMA, with accuracies of 96.88% and 95.83% in the cross-validation and test set prediction, respectively. Due to small sample size and risk of overfitting, classification models for the biological origin of processed PBMA were constructed by combining Raman spectra of the unprocessed and processed samples. Again, RF models achieved the highest accuracy in identifying the species, i.e., 94.27% in cross-validation and 94.44% in prediction. Conclusions These results indicated that the portable Raman spectrometer captured the chemical fingerprints that can effectively identify the plant species of different PBMA. Using this non-destructive Raman spectroscopic based method, the overall analysis from sample to answer was completed within 5 min, providing inspection laboratories a rapid and reliable screening tool to ensure the authenticity of the biological origin of PBMA. Highlights This study presents a novel method for rapid and non-destructive identification of the plant sources of PBMA (both unprocessed and processed) based on the Raman spectroscopic technique and machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ss应助云过半山采纳,获得10
2秒前
爱听歌凤灵完成签到,获得积分10
3秒前
Chen完成签到 ,获得积分10
6秒前
云轩完成签到,获得积分10
7秒前
8秒前
9秒前
77最可爱完成签到,获得积分10
12秒前
13秒前
陶赖赖完成签到,获得积分10
13秒前
dedeyy完成签到,获得积分10
14秒前
拼搏小丸子完成签到 ,获得积分10
17秒前
18秒前
NexusExplorer应助一只盒子采纳,获得10
18秒前
大个应助librahapper采纳,获得10
19秒前
赘婿应助如意的书南采纳,获得10
20秒前
yidingshangan发布了新的文献求助100
22秒前
科研通AI5应助活力的尔蓉采纳,获得10
23秒前
华仔应助逃亡的小狗采纳,获得10
24秒前
26秒前
30秒前
31秒前
一只盒子发布了新的文献求助10
35秒前
37秒前
孔刚完成签到 ,获得积分10
38秒前
李健应助小智多星采纳,获得10
43秒前
清茶韵心发布了新的文献求助10
47秒前
清新的寄风完成签到 ,获得积分10
47秒前
smart完成签到,获得积分10
48秒前
科目三应助活力的尔蓉采纳,获得10
48秒前
LT发布了新的文献求助10
49秒前
49秒前
52秒前
53秒前
半颗糖完成签到 ,获得积分10
54秒前
kai发布了新的文献求助10
56秒前
58秒前
达da完成签到,获得积分10
59秒前
1分钟前
陆小果完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324256
关于积分的说明 10217657
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798513
科研通“疑难数据库(出版商)”最低求助积分说明 758401