清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Efficient Domain Knowledge-Guided Semantic Prediction Framework for Pathological Subtypes on the Basis of Radiological Images With Limited Annotations

放射性武器 病态的 基础(线性代数) 计算机科学 领域(数学分析) 自然语言处理 人工智能 情报检索 医学 放射科 病理 数学 几何学 数学分析
作者
Chenglang Yuan,Jianpeng Li,Bin Huang,Mingyu Wang,Kangyang Cao,Yanji Luo,Yujian Zou,Shi‐Ting Feng,Bingsheng Huang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3558596
摘要

Accurate prediction of pathological subtypes on radiological images is one of the most important deep learning (DL) tasks for the appropriate selection of clinical treatment. It is challenging for conventional DL models to obtain sufficient pathological labels for training because of the heavy workload, invasive surgery, and knowledge requirements in pathological analysis. However, existing methods based on limited annotations, such as active learning (AL) and semi-supervised learning (SSL), have difficulty in capturing lesion's effective features because of the complicated semantic information of radiologic images. In this article, we introduce an efficient domain knowledge-guided semantic prediction framework that integrates domain knowledge-guided AL and SSL methods. This framework can effectively predict pathological subtypes on the basis of radiologic images with limited pathological annotations via three key modules: 1) the discriminative spatial-semantic feature extraction module captures the spatial-semantic features of lesions as semantic information that can better reflect the semantic relationship and effectively mitigate overfitting risk; 2) the explicit sign-guided anchor attention module measures the multimodal semantic distribution of samples under the guidance of clinical domain knowledge, thus selecting the most representative AL samples for pathological labeling; and 3) the implicit radiomics-guided dual-task entanglement module exploits the inherent constraint relationships between implicit radiomics features (IRFs) and pathological subtypes, facilitating the aggregation of unlabeled data. Experiments have been extensively conducted to evaluate our method in two clinical tasks: the pathological grading prediction in pancreatic neuroendocrine neoplasms (pNENs) and muscular invasiveness prediction in bladder cancer (BCa). The experimental results on both tasks demonstrate that the proposed method consistently outperforms the state-of-the-art approaches by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
5秒前
7秒前
ruogu7完成签到,获得积分10
7秒前
logo发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
虚心的幻梅完成签到 ,获得积分10
37秒前
一粟的粉r完成签到 ,获得积分10
41秒前
42秒前
42秒前
49秒前
50秒前
54秒前
猫油蛋完成签到,获得积分10
55秒前
鹏笑完成签到,获得积分10
55秒前
1分钟前
hwen1998完成签到 ,获得积分0
1分钟前
1分钟前
舒适的一凤完成签到 ,获得积分10
1分钟前
1分钟前
allrubbish完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
小萝卜1234发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494170
求助须知:如何正确求助?哪些是违规求助? 4591994
关于积分的说明 14435138
捐赠科研通 4524674
什么是DOI,文献DOI怎么找? 2478922
邀请新用户注册赠送积分活动 1463851
关于科研通互助平台的介绍 1436727