Starting from the structure: A review of small object detection based on deep learning

人工智能 范围(计算机科学) 深度学习 计算机科学 领域(数学) 领域(数学分析) 对象(语法) 目标检测 任务(项目管理) 机器学习 光学(聚焦) 特征(语言学) 点(几何) 模式识别(心理学) 几何学 语言学 纯数学 程序设计语言 管理 经济 数学 哲学 数学分析 物理 光学
作者
Zheng Xiuling,Huijuan Wang,Shang Yu,Gang Chen,Zou Suhua,Quanbo Yuan
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:146: 105054-105054 被引量:10
标识
DOI:10.1016/j.imavis.2024.105054
摘要

Object detection, as one of the most fundamental and essential tasks in the field of computer vision, has been the focus of unremitting efforts by researchers, who are committed to modifying the neural network structure in order to improve the accuracy of object detection and expedite task execution. As the application scope continues to expand, small object detection has gradually emerged as a crucial branch in the field of object detection. In this paper, the development history of object detection algorithms is introduced, the concept of small objects is introduced, and the current problems and challenges faced by small object detection are outlined. In this paper, the network structure is disassembled from a macroscopic point of view, and improved algorithms such as enhanced data augmentation, improved feature extraction, superior feature fusion, and refined loss functions are described in detail. Furthermore, the paper explores a series of emerging and improved algorithms for small object detection. It encompasses the introduction of advanced strategies such as unsupervised learning, end-to-end training, density cropping, transfer learning, and anchor-free approaches. The paper provides a comprehensive list of commonly used general-purpose datasets and domain-specific datasets for small object detection tasks, offering performance comparisons of the mentioned improved algorithms. In conclusion, the paper summarizes and provides an outlook on current small object detection algorithms, furnishing the reader with a thorough understanding of the field and insights into future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪雪雪碧完成签到,获得积分10
刚刚
Mer_Mer完成签到,获得积分10
刚刚
小白狗完成签到,获得积分10
刚刚
着急的沅完成签到,获得积分10
1秒前
司空元正发布了新的文献求助10
1秒前
1秒前
dzh发布了新的文献求助30
2秒前
NexusExplorer应助欢喜大地采纳,获得10
2秒前
一个可爱玉完成签到,获得积分10
2秒前
Mark完成签到 ,获得积分10
2秒前
今后应助落寞依玉采纳,获得10
3秒前
楼轶发布了新的文献求助10
3秒前
木鸽子发布了新的文献求助30
3秒前
Akim应助muqianyaowanan采纳,获得10
3秒前
4秒前
天真的铭发布了新的文献求助10
4秒前
科研通AI5应助Xx采纳,获得10
5秒前
紫眼儿发布了新的文献求助10
5秒前
5秒前
科研通AI5应助葫芦家二娃采纳,获得10
5秒前
tinglei711给tinglei711的求助进行了留言
5秒前
雪雪雪碧发布了新的文献求助10
6秒前
科目三应助冰岛计划采纳,获得10
6秒前
9秒前
楼轶完成签到,获得积分10
9秒前
丘比特应助学术智子采纳,获得10
10秒前
10秒前
缓冲间完成签到,获得积分20
10秒前
所所应助积极的凌波采纳,获得10
11秒前
11秒前
11秒前
12秒前
李李李er发布了新的文献求助10
12秒前
13秒前
yumemakase完成签到,获得积分10
13秒前
Akim应助adre采纳,获得20
13秒前
14秒前
欢喜大地发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137