亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images

人工智能 接收机工作特性 试验装置 特征选择 逻辑回归 机器学习 Lasso(编程语言) 计算机科学 特征(语言学) 深度学习 交叉验证 支持向量机 集合(抽象数据类型) 模式识别(心理学) 语言学 哲学 万维网 程序设计语言
作者
Jun Zhang,Liang Xia,Jiayi Liu,Xiaoying Niu,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Zhipeng Liang,Xueli Zhang,Guangyu Tang,Lin Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15: 1370838-1370838 被引量:9
标识
DOI:10.3389/fendo.2024.1370838
摘要

Purpose To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs). Material and methods The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the “One-vs-Rest” strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model. Results Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively. Conclusion The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称已挥发完成签到,获得积分10
4秒前
健康的远航完成签到,获得积分10
5秒前
斯文败类应助谭代涛采纳,获得10
6秒前
8秒前
10秒前
缓慢的花生完成签到,获得积分10
14秒前
14秒前
谭代涛完成签到,获得积分10
15秒前
一只大嵩鼠完成签到 ,获得积分10
16秒前
小鸟芋圆露露完成签到 ,获得积分10
16秒前
17秒前
谭代涛发布了新的文献求助10
18秒前
斯文败类应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得30
25秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
28秒前
35秒前
无花果应助现代的碧空采纳,获得10
38秒前
飞天大南瓜完成签到,获得积分10
38秒前
FiFi完成签到 ,获得积分10
41秒前
张杰列夫完成签到 ,获得积分10
42秒前
42秒前
levitt233完成签到 ,获得积分10
51秒前
科研通AI6应助凶狠的秀发采纳,获得10
52秒前
ceeray23应助mbappy07采纳,获得10
1分钟前
罗胖胖完成签到 ,获得积分10
1分钟前
1分钟前
xy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
光合作用完成签到,获得积分10
1分钟前
nini完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
tuanzi发布了新的文献求助10
1分钟前
含糊的无声完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898