Deep Learning Framework for Liver Tumor Segmentation

分割 人工智能 计算机科学 深度学习 计算机视觉
作者
Khushi Gupta,Shrey Aggarwal,Avinash Kumar Jha,Aamir Habib,Jayant Jagtap,Shrikrishna Kolhar,Shruti Patil,Ketan Kotecha,Tanupriya Choudhury
出处
期刊:EAI Endorsed Transactions on Pervasive Health and Technology [Institute for Computer Sciences, Social Informatics and Telecommunications Engineering]
卷期号:10
标识
DOI:10.4108/eetpht.10.5561
摘要

INTRODUCTION: Segregating hepatic tumors from the liver in computed tomography (CT) scans is vital in hepatic surgery planning. Extracting liver tumors in CT images is complex due to the low contrast between the malignant and healthy tissues and the hazy boundaries in CT images. Moreover, manually detecting hepatic tumors from CT images is complicated, time-consuming, and needs clinical expertise. OBJECTIVES: An automated liver and hepatic malignancies segmentation is essential to improve surgery planning, therapy, and follow-up evaluation. Therefore, this study demonstrates the creation of an intuitive approach for segmenting tumors from the liver in CT scans. METHODS: The proposed framework uses residual UNet (ResUNet) architecture and local region-based segmentation. The algorithm begins by segmenting the liver, followed by malignancies within the liver envelope. First, ResUNet trained on labeled CT images predicts the coarse liver pixels. Further, the region-level segmentation helps determine the tumor and improves the overall segmentation map. The model is tested on a public 3D-IRCADb dataset. RESULTS: Two metrics, namely dice coefficient and volumetric overlap error (VOE), were used to evaluate the performance of the proposed method. ResUNet model achieved dice of 0.97 and 0.96 in segmenting liver and tumor, respectively. The value of VOE is also reduced to 1.90 and 0.615 for liver and tumor segmentation. CONCLUSION: The proposed ResUNet model performs better than existing methods in the literature. Since the proposed model is built using U-Net, the model ensures quality and precise dimensions of the output.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四体不勤发布了新的文献求助10
2秒前
2秒前
2秒前
无花果应助愉快怀绿采纳,获得10
3秒前
我是老大应助na采纳,获得20
5秒前
Dannerys完成签到 ,获得积分10
6秒前
细心的初曼完成签到,获得积分10
7秒前
mia发布了新的文献求助10
7秒前
12秒前
12秒前
13秒前
13秒前
15秒前
16秒前
16秒前
Dean应助Juanjuan采纳,获得30
16秒前
DQ完成签到,获得积分10
17秒前
CodeCraft应助lumingrui采纳,获得10
17秒前
Ldq发布了新的文献求助10
18秒前
18秒前
Ldq发布了新的文献求助10
19秒前
JIRUIYI完成签到,获得积分10
19秒前
20秒前
TT发布了新的文献求助10
20秒前
tu111发布了新的文献求助30
21秒前
22秒前
23秒前
Ldq发布了新的文献求助10
24秒前
26秒前
TT完成签到,获得积分10
27秒前
29秒前
30秒前
bkagyin应助Ldq采纳,获得20
31秒前
英俊铸海发布了新的文献求助10
31秒前
bing完成签到 ,获得积分10
31秒前
忐忑的行天完成签到,获得积分10
33秒前
33秒前
34秒前
wan12138发布了新的文献求助10
34秒前
南卡发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776608
求助须知:如何正确求助?哪些是违规求助? 4108380
关于积分的说明 12708657
捐赠科研通 3829628
什么是DOI,文献DOI怎么找? 2112677
邀请新用户注册赠送积分活动 1136495
关于科研通互助平台的介绍 1020225