亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of an AI Score Combining Cancer Signs, Masking, and Risk to Select Patients for Supplemental Breast Cancer Screening

医学 乳腺癌 乳腺摄影术 接收机工作特性 癌症 乳房成像 回顾性队列研究 乳腺癌筛查 遮罩(插图) 人口 放射科 内科学 环境卫生 艺术 视觉艺术
作者
Y Liu,Moein Sorkhei,Karin Dembrower,Hossein Azizpour,Fredrik Strand,Kevin Smith
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:7
标识
DOI:10.1148/radiol.232535
摘要

Background Mammographic density measurements are used to identify patients who should undergo supplemental imaging for breast cancer detection, but artificial intelligence (AI) image analysis may be more effective. Purpose To assess whether AISmartDensity—an AI-based score integrating cancer signs, masking, and risk—surpasses measurements of mammographic density in identifying patients for supplemental breast imaging after a negative screening mammogram. Materials and Methods This retrospective study included randomly selected individuals who underwent screening mammography at Karolinska University Hospital between January 2008 and December 2015. The models in AISmartDensity were trained and validated using nonoverlapping data. The ability of AISmartDensity to identify future cancer in patients with a negative screening mammogram was evaluated and compared with that of mammographic density models. Sensitivity and positive predictive value (PPV) were calculated for the top 8% of scores, mimicking the proportion of patients in the Breast Imaging Reporting and Data System "extremely dense" category. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) and was compared using the DeLong test. Results The study population included 65 325 examinations (median patient age, 53 years [IQR, 47–62 years])—64 870 examinations in healthy patients and 455 examinations in patients with breast cancer diagnosed within 3 years of a negative screening mammogram. The AUC for detecting subsequent cancers was 0.72 and 0.61 (P < .001) for AISmartDensity and the best-performing density model (age-adjusted dense area), respectively. For examinations with scores in the top 8%, AISmartDensity identified 152 of 455 (33%) future cancers with a PPV of 2.91%, whereas the best-performing density model (age-adjusted dense area) identified 57 of 455 (13%) future cancers with a PPV of 1.09% (P < .001). AISmartDensity identified 32% (41 of 130) and 34% (111 of 325) of interval and next-round screen-detected cancers, whereas the best-performing density model (dense area) identified 16% (21 of 130) and 9% (30 of 325), respectively. Conclusion AISmartDensity, integrating cancer signs, masking, and risk, outperformed traditional density models in identifying patients for supplemental imaging after a negative screening mammogram. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kim and Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助张智采纳,获得10
1秒前
江山木发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
16秒前
24秒前
27秒前
0033发布了新的文献求助10
33秒前
37秒前
江山木完成签到,获得积分10
37秒前
莉莉丝完成签到 ,获得积分10
45秒前
唐泽雪穗应助科研通管家采纳,获得10
46秒前
唐泽雪穗应助科研通管家采纳,获得10
46秒前
50秒前
0033完成签到,获得积分20
53秒前
satsuki发布了新的文献求助10
54秒前
Koalas应助0033采纳,获得20
1分钟前
小净发布了新的文献求助10
1分钟前
1分钟前
张智发布了新的文献求助10
1分钟前
居无何完成签到 ,获得积分10
1分钟前
科研通AI5应助张智采纳,获得10
2分钟前
andrele发布了新的文献求助10
2分钟前
satsuki完成签到,获得积分10
2分钟前
Jasper应助satsuki采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
小胡爱科研完成签到 ,获得积分10
2分钟前
3分钟前
张智发布了新的文献求助10
3分钟前
3分钟前
周周粥完成签到 ,获得积分10
3分钟前
小宇宙完成签到,获得积分10
3分钟前
春天的粥完成签到 ,获得积分10
3分钟前
长街完成签到,获得积分10
3分钟前
充电宝应助长街采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
ldysaber完成签到,获得积分10
5分钟前
Wwwwww发布了新的文献求助10
5分钟前
李李原上草完成签到 ,获得积分0
5分钟前
Wwwwww完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077997
求助须知:如何正确求助?哪些是违规求助? 4296923
关于积分的说明 13387571
捐赠科研通 4119458
什么是DOI,文献DOI怎么找? 2256007
邀请新用户注册赠送积分活动 1260335
关于科研通互助平台的介绍 1193757