A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study

数字减影血管造影 医学 阶段(地层学) 放射科 血管造影 计算机断层血管造影 医学物理学 人工智能 计算机科学 生物 古生物学
作者
Bin Hu,Zhao Shi,Lu Li,Zhongchang Miao,Hao Wang,Zhen Zhou,Fandong Zhang,Rongpin Wang,Xiao Luo,Feng Xu,Sheng Li,Xiangming Fang,Xiaodong Wang,Ge Yan,Fajin Lv,Meng Zhang,Qiu Sun,Guangbin Cui,Yubao Liu,S Zhang
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (4): e261-e271 被引量:28
标识
DOI:10.1016/s2589-7500(23)00268-6
摘要

BackgroundArtificial intelligence (AI) models in real-world implementation are scarce. Our study aimed to develop a CT angiography (CTA)-based AI model for intracranial aneurysm detection, assess how it helps clinicians improve diagnostic performance, and validate its application in real-world clinical implementation.MethodsWe developed a deep-learning model using 16 546 head and neck CTA examination images from 14 517 patients at eight Chinese hospitals. Using an adapted, stepwise implementation and evaluation, 120 certified clinicians from 15 geographically different hospitals were recruited. Initially, the AI model was externally validated with images of 900 digital subtraction angiography-verified CTA cases (examinations) and compared with the performance of 24 clinicians who each viewed 300 of these cases (stage 1). Next, as a further external validation a multi-reader multi-case study enrolled 48 clinicians to individually review 298 digital subtraction angiography-verified CTA cases (stage 2). The clinicians reviewed each CTA examination twice (ie, with and without the AI model), separated by a 4-week washout period. Then, a randomised open-label comparison study enrolled 48 clinicians to assess the acceptance and performance of this AI model (stage 3). Finally, the model was prospectively deployed and validated in 1562 real-world clinical CTA cases.FindingsThe AI model in the internal dataset achieved a patient-level diagnostic sensitivity of 0·957 (95% CI 0·939–0·971) and a higher patient-level diagnostic sensitivity than clinicians (0·943 [0·921–0·961] vs 0·658 [0·644–0·672]; p<0·0001) in the external dataset. In the multi-reader multi-case study, the AI-assisted strategy improved clinicians' diagnostic performance both on a per-patient basis (the area under the receiver operating characteristic curves [AUCs]; 0·795 [0·761–0·830] without AI vs 0·878 [0·850–0·906] with AI; p<0·0001) and a per-aneurysm basis (the area under the weighted alternative free-response receiver operating characteristic curves; 0·765 [0·732–0·799] vs 0·865 [0·839–0·891]; p<0·0001). Reading time decreased with the aid of the AI model (87·5 s vs 82·7 s, p<0·0001). In the randomised open-label comparison study, clinicians in the AI-assisted group had a high acceptance of the AI model (92·6% adoption rate), and a higher AUC when compared with the control group (0·858 [95% CI 0·850–0·866] vs 0·789 [0·780–0·799]; p<0·0001). In the prospective study, the AI model had a 0·51% (8/1570) error rate due to poor-quality CTA images and recognition failure. The model had a high negative predictive value of 0·998 (0·994–1·000) and significantly improved the diagnostic performance of clinicians; AUC improved from 0·787 (95% CI 0·766–0·808) to 0·909 (0·894–0·923; p<0·0001) and patient-level sensitivity improved from 0·590 (0·511–0·666) to 0·825 (0·759–0·880; p<0·0001).InterpretationThis AI model demonstrated strong clinical potential for intracranial aneurysm detection with improved clinician diagnostic performance, high acceptance, and practical implementation in real-world clinical cases.FundingNational Natural Science Foundation of China.TranslationFor the Chinese translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Calla完成签到,获得积分10
2秒前
Lin完成签到 ,获得积分10
2秒前
3秒前
3秒前
漂亮问枫发布了新的文献求助10
4秒前
wanci应助坚定的中蓝采纳,获得10
5秒前
碧蓝安露完成签到,获得积分10
5秒前
6秒前
帅哥吴克完成签到,获得积分10
6秒前
小猫围子完成签到,获得积分10
7秒前
lincsh发布了新的文献求助50
8秒前
赵宝正完成签到,获得积分10
8秒前
zhou发布了新的文献求助10
9秒前
齐小强完成签到,获得积分10
11秒前
12秒前
flymove完成签到,获得积分10
12秒前
Elena完成签到,获得积分10
13秒前
lucky发布了新的文献求助10
14秒前
大秦完成签到,获得积分10
14秒前
ding应助wangzhen采纳,获得10
15秒前
17秒前
CipherSage应助科研苦命人采纳,获得10
17秒前
18秒前
lmr发布了新的文献求助10
18秒前
田様应助zhou采纳,获得10
19秒前
荣荣完成签到,获得积分10
21秒前
洛苏发布了新的文献求助10
21秒前
Raine发布了新的文献求助10
22秒前
qwert完成签到,获得积分10
23秒前
一忽儿左完成签到 ,获得积分10
24秒前
25秒前
科研通AI6应助tyk采纳,获得10
26秒前
26秒前
生动谷蓝完成签到,获得积分10
27秒前
wg发布了新的文献求助20
27秒前
lmr完成签到,获得积分10
27秒前
27秒前
刘莅发布了新的文献求助20
28秒前
单纯从露完成签到 ,获得积分20
28秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4339252
求助须知:如何正确求助?哪些是违规求助? 3848135
关于积分的说明 12017567
捐赠科研通 3489279
什么是DOI,文献DOI怎么找? 1914977
邀请新用户注册赠送积分活动 957976
科研通“疑难数据库(出版商)”最低求助积分说明 858264