DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 404-404 被引量:1
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐完成签到,获得积分10
刚刚
刚刚
科研通AI5应助SongNan_Ding采纳,获得10
1秒前
天天快乐应助yeyongchang_hit采纳,获得10
2秒前
积极以云完成签到,获得积分10
2秒前
3秒前
开心的桔子完成签到 ,获得积分10
4秒前
4秒前
沁晨完成签到,获得积分20
4秒前
草字头完成签到,获得积分10
5秒前
6秒前
在冲ss发布了新的文献求助10
6秒前
小阿博发布了新的文献求助20
6秒前
6秒前
打打应助包子采纳,获得10
7秒前
8秒前
Jasper应助ash采纳,获得10
8秒前
8秒前
舒适的虔发布了新的文献求助10
8秒前
屯屯鱼发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI5应助HYDROGEL采纳,获得10
11秒前
JUGG应助1821977451采纳,获得10
11秒前
鱼七发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
fubaozhe发布了新的文献求助10
12秒前
13秒前
tothemoon发布了新的文献求助10
13秒前
实验室同学完成签到,获得积分10
14秒前
乐乐应助茵陈采纳,获得10
15秒前
阿迪发布了新的文献求助10
15秒前
ChenXY发布了新的文献求助10
15秒前
111发布了新的文献求助10
15秒前
16秒前
幽默不乐发布了新的文献求助10
16秒前
dxy完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853